Derivation of a Floquet Formalism within a Natural Framework

[1]  M. Leskes,et al.  Floquet theory in solid-state nuclear magnetic resonance. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[2]  H. Delatte,et al.  Influence of Temperature on Immature Development, Survival, Longevity, Fecundity, and Gonotrophic Cycles of Aedes albopictus, Vector of Chikungunya and Dengue in the Indian Ocean , 2009, Journal of medical entomology.

[3]  Christopher A. Klausmeier,et al.  Floquet theory: a useful tool for understanding nonequilibrium dynamics , 2008, Theoretical Ecology.

[4]  M. Lipsitch,et al.  How generation intervals shape the relationship between growth rates and reproductive numbers , 2007, Proceedings of the Royal Society B: Biological Sciences.

[5]  Nicolas Bacaër,et al.  The epidemic threshold of vector-borne diseases with seasonality , 2006, Journal of mathematical biology.

[6]  H. D. Groot,et al.  A physical interpretation of the Floquet description of magic angle spinning nuclear magnetic resonance spectroscopy , 1998 .

[7]  Mick G. Roberts,et al.  THRESHOLD QUANTITIES FOR INFECTIOUS DISEASES IN PERIODIC ENVIRONMENTS , 1995 .

[8]  Sinclair,et al.  Solution of the Schrodinger Equation with a Hamiltonian Periodic in Time , 2011 .

[9]  J. Heesterbeek,et al.  Threshold quantities for helminth infections , 1995, Journal of mathematical biology.

[10]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[11]  M. Alonso,et al.  Quantum and statistical physics , 1968 .

[12]  G. Floquet Sur les équations différentielles linéaires à coefficients périodiques , 1883 .