Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation

[1]  Nathan Roberts,et al.  Boosting genome editing efficiency in human cells and plants with novel LbCas12a variants , 2023, Genome Biology.

[2]  G. Parveez,et al.  Multiplex CRISPR/Cas9 gene-editing platform in oil palm targeting mutations in EgFAD2 and EgPAT genes , 2023, Journal of Genetic Engineering and Biotechnology.

[3]  C. A. Nascimento,et al.  Overexpression of CsSAMT in Citrus sinensis Induces Defense Response and Increases Resistance to Xanthomonas citri subsp. citri , 2022, Frontiers in Plant Science.

[4]  M. Takita,et al.  MqsR toxin as a biotechnological tool for plant pathogen bacterial control , 2022, Scientific Reports.

[5]  Yanpeng Wang,et al.  Genome-edited powdery mildew resistance in wheat without growth penalties , 2022, Nature.

[6]  Nathan Roberts,et al.  Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases , 2022, Frontiers in Genome Editing.

[7]  I. Goldman,et al.  Efficient production of transgene-free, gene-edited carrot plants via protoplast transformation , 2022, Plant Cell Reports.

[8]  Xiaoen Huang,et al.  LbCas12a-D156R Efficiently Edits LOB1 Effector Binding Elements to Generate Canker-Resistant Citrus Plants , 2022, Cells.

[9]  Christopher A. Vakulskas,et al.  Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-free Genome Editing in Plants , 2022, Frontiers in Genome Editing.

[10]  J. Botella,et al.  Non-GM Genome Editing Approaches in Crops , 2021, Frontiers in Genome Editing.

[11]  Xiaoen Huang,et al.  Highly Efficient Generation of Canker-Resistant Sweet Orange Enabled by an Improved CRISPR/Cas9 System , 2021, bioRxiv.

[12]  Xiaoen Huang,et al.  Base Editors for Citrus Gene Editing , 2021, bioRxiv.

[13]  A. Omar,et al.  Biallelic editing of the LOB1 promoter via CRISPR/Cas9 creates canker-resistant 'Duncan' grapefruit. , 2021, Phytopathology.

[14]  B. Staskawicz,et al.  Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance , 2021, Proceedings of the National Academy of Sciences.

[15]  Matthew S. McNeill,et al.  AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines , 2021, Nature Communications.

[16]  Qiang Li,et al.  Pyramiding the antimicrobial PR1aCB and AATCB genes in ‘Tarocco’ blood orange (Citrus sinensis Osbeck) to enhance citrus canker resistance , 2021, Transgenic Research.

[17]  Stephen M. Mount,et al.  Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems , 2021, Nature Communications.

[18]  Maxuel O. Andrade,et al.  CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. , 2021, The Plant journal : for cell and molecular biology.

[19]  M. Lillemo,et al.  Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom – A Review , 2021, Frontiers in Plant Science.

[20]  Xuedong Zhou,et al.  Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects , 2021, Frontiers in Microbiology.

[21]  C. Zipfel,et al.  The Arabidopsis immune receptor EFR increases resistance to the bacterial pathogens Xanthomonas and Xylella in transgenic sweet orange , 2021, bioRxiv.

[22]  Qiang Xu,et al.  Natural variations of TFIIAγ gene and LOB1 promoter contribute to citrus canker disease resistance in Atalantia buxifolia , 2021, PLoS genetics.

[23]  C. Dunand,et al.  CsPrx25, a class III peroxidase in Citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification , 2020, Horticulture research.

[24]  Lihua Wang,et al.  An efficient sorghum protoplast assay for transient gene expression and gene editing by CRISPR/Cas9 , 2020, PeerJ.

[25]  Nian Wang,et al.  The immunity of Meiwa kumquat against Xanthomonas citri is associated with a known susceptibility gene induced by a transcription activator-like effector , 2020, PLoS pathogens.

[26]  R. Nodari,et al.  PEG-Delivered CRISPR-Cas9 Ribonucleoproteins System for Gene-Editing Screening of Maize Protoplasts , 2020, Genes.

[27]  Jin Xu,et al.  Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations , 2020, Plant Molecular Biology.

[28]  Qiang Li,et al.  CsWAKL08, a pathogen-induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus bacterial canker via ROS control and JA signaling , 2020, Horticulture Research.

[29]  K. Zhao,et al.  Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck) , 2019, PloS one.

[30]  Yunde Zhao,et al.  Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants , 2019, aBIOTECH.

[31]  Álvaro L. Pérez-Quintero,et al.  Broad-spectrum resistance to bacterial blight in rice using genome editing , 2019, Nature Biotechnology.

[32]  P. Hofvander,et al.  Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. , 2018, Physiologia plantarum.

[33]  Thomas Colthurst,et al.  A universal SNP and small-indel variant caller using deep neural networks , 2018, Nature Biotechnology.

[34]  F. White,et al.  Functional characterization of the citrus canker susceptibility gene CsLOB1. , 2018, Molecular plant pathology.

[35]  J. Graham,et al.  Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. , 2018, Molecular plant pathology.

[36]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[37]  J. Graham,et al.  Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice , 2018, Transgenic Research.

[38]  E. Stover,et al.  Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus , 2017, PloS one.

[39]  Sanzhen Liu,et al.  Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker. , 2017, Molecular plant pathology.

[40]  Xiuping Zou,et al.  Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene CsLOB1 promoter in citrus , 2017, Plant biotechnology journal.

[41]  Y. Ruan,et al.  Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction , 2017, Nature Genetics.

[42]  Kabin Xie,et al.  CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants. , 2017, Molecular plant.

[43]  P. Lefeuvre,et al.  Complete Genome Sequences of Six Copper-Resistant Xanthomonas citri pv. citri Strains Causing Asiatic Citrus Canker, Obtained Using Long-Read Technology , 2017, Genome Announcements.

[44]  T. Mockler,et al.  Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases , 2017, bioRxiv.

[45]  A. Castagnaro,et al.  Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease , 2017, Plant Molecular Biology.

[46]  Yanpeng Wang,et al.  Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes , 2017, Nature Communications.

[47]  F. White,et al.  Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker , 2017, Plant biotechnology journal.

[48]  R. Viola,et al.  DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins , 2016, Front. Plant Sci..

[49]  Joshua K Young,et al.  Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes , 2016, Nature Communications.

[50]  Yi Zhang,et al.  Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA , 2016, Nature Communications.

[51]  E. Stover,et al.  Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB) , 2016, Front. Plant Sci..

[52]  Shuo Duan,et al.  Temporal Transcription Profiling of Sweet Orange in Response to PthA4-Mediated Xanthomonas citri subsp. citri Infection. , 2016, Phytopathology.

[53]  H. Krishna,et al.  Somaclonal variations and their applications in horticultural crops improvement , 2016, 3 Biotech.

[54]  Sung Jin Chung,et al.  Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins , 2016, Plant Cell Reports.

[55]  E. Stover,et al.  Reduced Susceptibility to Xanthomonas citri in Transgenic Citrus Expressing the FLS2 Receptor From Nicotiana benthamiana. , 2016, Molecular plant-microbe interactions : MPMI.

[56]  T. Shimada,et al.  Citrus breeding, genetics and genomics in Japan , 2016, Breeding science.

[57]  Soon Il Kwon,et al.  DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins , 2015, Nature Biotechnology.

[58]  W. Frommer,et al.  Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease , 2014, Proceedings of the National Academy of Sciences.

[59]  C. Benedetti,et al.  Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase. , 2013, Molecular plant-microbe interactions : MPMI.

[60]  J. Dangl,et al.  Pivoting the Plant Immune System from Dissection to Deployment , 2013, Science.

[61]  L. Peña,et al.  Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. , 2012, Plant biotechnology journal.

[62]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[63]  J. Graham,et al.  Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis , 2011, Applied and Environmental Microbiology.

[64]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[65]  J. Graham,et al.  Effect of frequency of copper applications on control of citrus canker and the yield of young bearing sweet orange trees , 2010 .

[66]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[67]  Z. Ning,et al.  Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes , 2009, Nature Methods.

[68]  Janick Mathys,et al.  Plant pathogenesis-related (PR) proteins: a focus on PR peptides. , 2008, Plant physiology and biochemistry : PPB.

[69]  H. Fujii,et al.  Ectopic Expression of an FT Homolog from Citrus Confers an Early Flowering Phenotype on Trifoliate Orange (Poncirus trifoliata L. Raf.) , 2005, Transgenic Research.

[70]  Xiaoe Yang,et al.  Surface runoff losses of copper and zinc in sandy soils. , 2003, Journal of environmental quality.

[71]  B. Shuai,et al.  The Lateral Organ Boundaries Gene Defines a Novel, Plant-Specific Gene Family1 , 2002, Plant Physiology.

[72]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[73]  L. Peña,et al.  Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time , 2001, Nature Biotechnology.

[74]  R. Eisler Silver Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review , 1996 .

[75]  J. Grosser,et al.  Somatic hybrid plants from sexually incompatible woody species: Citrus reticulata and Citropsis gilletiana , 1990, Plant Cell Reports.

[76]  T. Murashige,et al.  Growth factor requirements of Citrus tissue culture , 1969 .

[77]  D. Barlex Synoptic Review , 2020, Contemporary Issues in Technology Education.

[78]  A. Omar,et al.  Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement. , 2016, Methods in molecular biology.

[79]  Jaime Cubero,et al.  Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. , 2004, Molecular plant pathology.

[80]  Tim R. Gottwald,et al.  Citrus Canker: The Pathogen and Its Impact , 2002 .

[81]  S. Swarup,et al.  A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus , 1991 .