A molecular dynamics study on atomistic mechanisms of nano-scale cutting process of sapphire

Sapphire is a promising material for various optical, electronic, and mechanical applications, but is very difficult to machine due to its high hardness and brittleness. In this study we attempt to study fundamental atomistic mechanisms of nano-scale cutting of sapphire using Molecular dynamics (MD). Atomistic models for diamond cutting of sapphire are developed using Vashishta and Lennard-Jones potentials and MD simulations address the effects of the tool edge radius and uncut chip thickness on the cutting process. Cutting and normal forces with different cutting parameters are calculated and compared with the experimental data in previous research. An analysis using a local measurement of atomistic strain also reveals detailed deformation mechanisms of the sapphire cutting process.

[2]  Molecular dynamics simulation of electron trapping in sapphire , 1997 .

[3]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[4]  Tony Shardlow,et al.  Splitting for Dissipative Particle Dynamics , 2002, SIAM J. Sci. Comput..

[5]  J. Patten,et al.  Extreme negative rake angle technique for single point diamond nano-cutting of silicon , 2001 .

[6]  Shreyes N. Melkote,et al.  Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process , 2007 .

[7]  Erdan Gu,et al.  Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser , 2003 .

[8]  Wilfried Wunderlich,et al.  Molecular dynamics — simulations of the fracture toughness of sapphire , 2001 .

[9]  B. Vogt Scooping of sapphire domes on CNC machines , 2005 .

[10]  J. Shirakashi,et al.  Scratch Nanolithography on Si Surface Using Scanning Probe Microscopy: Influence of Scanning Parameters on Groove Size , 2008 .

[11]  M. C. Shaw The size effect in metal cutting , 1952, Journal of Fluids Engineering.

[12]  Paul Mativenga,et al.  Size effect and tool geometry in micromilling of tool steel , 2009 .

[13]  Jaime Gilberto Duduch,et al.  Ductile and brittle modes in single-point-diamond-turning of silicon probed by Raman scattering , 1999 .

[14]  R. Mayor,et al.  Molecular dynamics simulations of plastic material deformation in machining with a round cutting edge , 2012 .

[15]  A. Nakano,et al.  Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina , 2008 .

[16]  J. Langer,et al.  Dynamics of viscoplastic deformation in amorphous solids , 1997, cond-mat/9712114.

[17]  Zone-Ching Lin,et al.  Simulation Analysis of Nanocutting on the Surface of Sapphire , 2012 .

[18]  Khaled Abou-El-Hossein,et al.  Molecular Dynamics Modeling of Nanoscale Machining of Silicon , 2013 .

[19]  M. Salmeron,et al.  Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. , 1997, Chemical reviews.

[20]  T. P. Chen,et al.  Recent developments in tip-based nanofabrication and its roadmap. , 2008, Journal of nanoscience and nanotechnology.

[21]  Z. Pei,et al.  Machining processes for sapphire wafers: a literature review , 2011 .

[22]  Yongda Yan,et al.  Modelling and experimental study of machined depth in AFM-based milling of nanochannels , 2013 .

[23]  Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools , 2009 .

[24]  M. B. Cai,et al.  Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon , 2007 .

[25]  Nuno Silvestre,et al.  Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics , 2014 .

[26]  Hideaki Takahashi,et al.  Nanopatterning on aluminum surfaces with AFM probe , 2003 .

[27]  Zone-Ching Lin,et al.  A calculating method for the fewest cutting passes on sapphire substrate at a certain depth using specific down force energy with an AFM probe , 2012 .

[28]  Robert Lewis Reuben,et al.  Diamond machining of silicon: A review of advances in molecular dynamics simulation , 2015 .

[29]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[30]  S. Goel The current understanding on the diamond machining of silicon carbide , 2014 .

[31]  Y. Weng,et al.  The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy. , 2014, Scanning.

[32]  W. Steele,et al.  Molecular dynamics simulations of oxygen monolayers on graphite , 1987 .

[33]  Y. G. Xu,et al.  Molecular dynamics calculation of the J-integral fracture criterion for nano-sized crystals , 2004 .

[34]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[35]  K. Maekawa,et al.  Friction and tool wear in nano-scale machining—a molecular dynamics approach , 1995 .

[36]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[37]  Ellad B. Tadmor,et al.  A Unified Interpretation of Stress in Molecular Systems , 2010, 1008.4819.

[38]  H. M. Chan,et al.  A novel process for the generation of pristine sapphire surfaces , 2002 .