In vivo characterization and analysis of glioblastoma at different stages using multiscale photoacoustic molecular imaging

[1]  L. Zeng,et al.  In vivo quantitative photoacoustic evaluation of the liver and kidney pathology in tyrosinemia , 2022, Photoacoustics.

[2]  Lihong V. Wang,et al.  Long‐Duration and Non‐Invasive Photoacoustic Imaging of Multiple Anatomical Structures in a Live Mouse Using a Single Contrast Agent , 2022, bioRxiv.

[3]  Tian Jin,et al.  Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function , 2022, Journal of neural engineering.

[4]  D. Cui,et al.  Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. , 2022, Acta biomaterialia.

[5]  Kun Wang,et al.  A novel co-targeting strategy of EGFR/SEC61G for multi-modality fluorescence/MR/photoacoustic imaging of glioblastoma. , 2021, Nanomedicine : nanotechnology, biology, and medicine.

[6]  Jing Lv,et al.  Quantitative Functional Evaluation of Liver Fibrosis in Mice with Dynamic Contrast-enhanced Photoacoustic Imaging. , 2021, Radiology.

[7]  Shanshan Huang,et al.  Photoacoustic molecular imaging-escorted adipose photodynamic–browning synergy for fighting obesity with virus-like complexes , 2021, Nature Nanotechnology.

[8]  Chengbo Liu,et al.  Deep Learning Enables Superior Photoacoustic Imaging at Ultralow Laser Dosages , 2020, Advanced science.

[9]  N. S. van den Berg,et al.  Photoacoustic Molecular Imaging for the Identification of Lymph Node Metastasis in Head and Neck Cancer Using an Anti-EGFR Antibody–Dye Conjugate , 2020, The Journal of Nuclear Medicine.

[10]  Joshua E. Elias,et al.  Physiological blood–brain transport is impaired with age by a shift in transcytosis , 2020, Nature.

[11]  C. Brennan,et al.  Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells , 2020, Cell.

[12]  Jin Young Kim,et al.  Super Wide-Field Photoacoustic Microscopy of Animals and Humans In Vivo , 2020, IEEE Transactions on Medical Imaging.

[13]  Urs A. T. Hofmann,et al.  Discerning calvarian microvascular networks by combined optoacoustic ultrasound microscopy , 2020, Photoacoustics.

[14]  Urs A. T. Hofmann,et al.  Intravital optoacoustic and ultrasound bio-microscopy reveal radiation-inhibited skull angiogenesis. , 2020, Bone.

[15]  A. Panigrahy,et al.  Preclinical ImmunoPET Imaging of Glioblastoma-Infiltrating Myeloid Cells Using Zirconium-89 Labeled Anti-CD11b Antibody , 2019, Molecular Imaging and Biology.

[16]  Shi Li,et al.  In vivo dual-scale photoacoustic surveillance and assessment of burn healing. , 2019, Biomedical optics express.

[17]  Xiaoyuan Chen,et al.  Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. , 2019, Chemical Society reviews.

[18]  Jun Li,et al.  Photoacoustic microscopy of obesity-induced cerebrovascular alterations , 2019, NeuroImage.

[19]  Liming Nie,et al.  Rapid one-step 18F-radiolabeling of biomolecules in aqueous media by organophosphine fluoride acceptors , 2019, Nature Communications.

[20]  S. Peters,et al.  Brain metastases , 2019, Nature Reviews Disease Primers.

[21]  Puxiang Lai,et al.  Aggregation‐Induced Absorption Enhancement for Deep Near‐Infrared II Photoacoustic Imaging of Brain Gliomas In Vivo , 2019, Advanced science.

[22]  Liang Song,et al.  Motion Correction in Optical Resolution Photoacoustic Microscopy , 2019, IEEE Transactions on Medical Imaging.

[23]  S. Anand,et al.  Integrin CD11b activation drives anti-tumor innate immunity , 2018, Nature Communications.

[24]  Chris Jun Hui Ho,et al.  Noninvasive Anatomical and Functional Imaging of Orthotopic Glioblastoma Development and Therapy using Multispectral Optoacoustic Tomography , 2018, Translational oncology.

[25]  Juan F. García,et al.  Molecular Study of Long-Term Survivors of Glioblastoma by Gene-Targeted Next-Generation Sequencing , 2018, Journal of neuropathology and experimental neurology.

[26]  Leland S. Hu,et al.  Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data , 2018, Neuro-oncology.

[27]  D. Gabrilovich,et al.  Myeloid-derived suppressor cells coming of age , 2018, Nature Immunology.

[28]  Yu Liu,et al.  In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High‐Efficient Near‐Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability , 2017, Advanced science.

[29]  Y. S. Zhang,et al.  Imaging Biomaterial-Tissue Interactions. , 2017, Trends in biotechnology.

[30]  G. Lim,et al.  Handheld Photoacoustic Microscopy Probe , 2017, Scientific Reports.

[31]  D. Quail,et al.  The Microenvironmental Landscape of Brain Tumors. , 2017, Cancer cell.

[32]  Jeff H. Duyn,et al.  Studying brain microstructure with magnetic susceptibility contrast at high-field , 2017, NeuroImage.

[33]  W. Wick,et al.  Impact of Blood–Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases , 2016, Clinical Cancer Research.

[34]  Kenneth Hess,et al.  The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? , 2016, Journal of neurosurgery.

[35]  Patrick Y. Wen,et al.  Neuro-oncology in 2015: Progress in glioma diagnosis, classification and treatment , 2016, Nature Reviews Neurology.

[36]  Helmut Kettenmann,et al.  The role of microglia and macrophages in glioma maintenance and progression , 2015, Nature Neuroscience.

[37]  Chao Li,et al.  CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells , 2015, Theranostics.

[38]  Lihong V. Wang,et al.  High-speed label-free functional photoacoustic microscopy of mouse brain in action , 2015, Nature Methods.

[39]  L. Kwak,et al.  Targeting tumor-associated myeloid cells for cancer immunotherapy , 2015, Oncoimmunology.

[40]  Wei Huang,et al.  Perylene‐Diimide‐Based Nanoparticles as Highly Efficient Photoacoustic Agents for Deep Brain Tumor Imaging in Living Mice , 2015, Advanced materials.

[41]  Jin Young Kim,et al.  Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner , 2015, Scientific Reports.

[42]  Zhe Wang,et al.  Early-Stage Imaging of Nanocarrier-Enhanced Chemotherapy Response in Living Subjects by Scalable Photoacoustic Microscopy , 2014, ACS nano.

[43]  Zhongchan Sun,et al.  In Vivo Labeling of Serum Albumin for PET , 2014, The Journal of Nuclear Medicine.

[44]  D. Quail,et al.  Microenvironmental regulation of tumor progression and metastasis , 2014 .

[45]  Christina S. Leslie,et al.  CSF-1R inhibition alters macrophage polarization and blocks glioma progression , 2013, Nature Medicine.

[46]  Vasilis Ntziachristos,et al.  Multispectral Opto-acoustic Tomography (MSOT) of the Brain and Glioblastoma Characterization , 2013, NeuroImage.

[47]  Jun Zou,et al.  Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. , 2012, Journal of biomedical optics.

[48]  A. Sica,et al.  Origin and Functions of Tumor-Associated Myeloid Cells (TAMCs) , 2012, Cancer Microenvironment.

[49]  Jesse V. Jokerst,et al.  A Brain Tumor Molecular Imaging Strategy Using A New Triple-Modality MRI-Photoacoustic-Raman Nanoparticle , 2011, Nature Medicine.

[50]  S. Grossman,et al.  Tissue concentration of systemically administered antineoplastic agents in human brain tumors , 2011, Journal of Neuro-Oncology.

[51]  John H. Zhang,et al.  Comparison Evans Blue injection routes: Intravenous versus intraperitoneal, for measurement of blood–brain barrier in a mice hemorrhage model , 2011, Journal of Neuroscience Methods.

[52]  J. Rees Neuro-oncology , 2010, Practical Neurology.

[53]  V. Ntziachristos Going deeper than microscopy: the optical imaging frontier in biology , 2010, Nature Methods.

[54]  Junjie Yao,et al.  Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo. , 2009, Journal of biomedical optics.

[55]  Jochen Herms,et al.  Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis , 2009, Glia.

[56]  P. Wen,et al.  Novel anti-angiogenic therapies for malignant gliomas , 2008, The Lancet Neurology.

[57]  D. Brenner,et al.  Computed tomography--an increasing source of radiation exposure. , 2007, The New England journal of medicine.

[58]  E. Aronica,et al.  Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. , 2007, Brain : a journal of neurology.

[59]  Minquan Tian,et al.  Discovery of novel dyes with absorption maxima at 1.1 microm. , 2003, Journal of the American Chemical Society.

[60]  Christoph Groden,et al.  Application of micro-CT in small animal imaging. , 2010, Methods.