Newton-type methods on Riemannian manifolds under Kantorovich-type conditions
暂无分享,去创建一个
[1] J. Meza. Newton's method , 2011 .
[2] I. Argyros. Convergence and Applications of Newton-type Iterations , 2008 .
[3] Ioannis K. Argyros,et al. A semilocal convergence analysis for directional Newton methods , 2010, Math. Comput..
[4] J. H. Wang,et al. Convergence of Newton’s Method for Sections on Riemannian Manifolds , 2011, J. Optim. Theory Appl..
[5] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[6] Changbum Chun,et al. Third-order family of methods in Banach spaces , 2011, Comput. Math. Appl..
[7] N. Romero,et al. On a characterization of some Newton-like methods of R-order at least three , 2005 .
[8] Chong Li,et al. Smale's point estimate theory for Newton's method on Lie groups , 2009, J. Complex..
[9] C. Udriste,et al. Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .
[10] J. Miller. Numerical Analysis , 1966, Nature.
[11] I. Argyros. Improved Error Bounds for a Chebysheff-Halley-Type Method , 1999 .
[12] José Antonio Ezquerro,et al. Chebyshev-like methods and quadratic equations , 1999 .
[13] Ioannis K. Argyros. An improved unifying convergence analysis of Newton’s method in Riemannian manifolds , 2007 .
[14] Chebysheff-Halley-like methods in Banach spaces , 1997 .
[15] Sergio Amat,et al. Third-order iterative methods with applications to Hammerstein equations: A unified approach , 2011, J. Comput. Appl. Math..
[16] J. A. Ezquerro,et al. A Super-Halley Type Approximation in Banach Spaces , 2001 .
[17] David Groisser. Newton's method, zeroes of vector fields, and the Riemannian center of mass , 2004, Adv. Appl. Math..
[18] N. Romero,et al. General Study of Iterative Processes of R-Order at Least Three under Weak Convergence Conditions , 2007 .
[19] V. Shamanskii. A modification of Newton's method , 1967 .
[20] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[21] R. Adler,et al. Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .
[22] Y. Cho,et al. Numerical Methods for Equations and its Applications , 2012 .
[23] Jean-Pierre Dedieu,et al. Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds , 2005, J. Complex..
[24] Jonathan H. Manton,et al. Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..
[25] Orizon Pereira Ferreira,et al. Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..
[26] J. A. Ezquerro,et al. New Kantorovich‐Type Conditions for Halley's Method , 2005 .
[27] I. Argyros,et al. Newton’s method for approximating zeros of vector fields on Riemannian manifolds , 2009 .
[28] Dharmendra K. Gupta,et al. Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces , 2008 .
[29] P. Priouret,et al. Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.
[30] O. Smolyanov,et al. The theory of differentiation in linear topological spaces , 1967 .
[31] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[32] I. Holopainen. Riemannian Geometry , 1927, Nature.
[33] Felipe Alvarez,et al. A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..
[34] S. Amat,et al. Third-order iterative methods under Kantorovich conditions , 2007 .
[35] D. Gabay. Minimizing a differentiable function over a differential manifold , 1982 .
[36] D. K. Gupta,et al. Recurrence relations for a Newton-like method in Banach spaces , 2007 .
[37] I. Argyros. Improving the order and rates of convergence for the Super-Halley method in Banach spaces , 1998 .
[38] C. Kelley. A Shamanskii-Like acceleration scheme for nonlinear equations at singular roots , 1986 .
[39] Ioannis K. Argyros,et al. A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .
[40] Lei-Hong Zhang,et al. Riemannian Newton Method for the Multivariate Eigenvalue Problem , 2010, SIAM J. Matrix Anal. Appl..
[41] J. Traub. Iterative Methods for the Solution of Equations , 1982 .
[42] Ioannis K. Argyros,et al. Weaker conditions for the convergence of Newton's method , 2012, J. Complex..
[43] Chong Li,et al. Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .
[44] J. A. Ezquerro. A modification of the Chebyshev method , 1997 .
[45] Natalia Romero Álvarez. Familias paramétricas de procesos iterativos de alto orden de convergencia , 2006 .
[46] D. K. Gupta,et al. Semilocal convergence of a family of third-order methods in Banach spaces under Hölder continuous second derivative ☆ , 2008 .
[47] Chong Li,et al. Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..