Newton-type methods on Riemannian manifolds under Kantorovich-type conditions

One of the most studied problems in numerical analysis is the approximation of nonlinear equations using iterative methods. In the last years, attention has been paid in studying Newton's method on manifolds. In this paper, we generalize this study considering some Newton-type iterative methods. A characterization of the convergence under Kantorovich type conditions and optimal estimates of the error are found. Using normal coordinates the order of convergence is derived. The sufficient semilocal convergence criteria are weaker and the majorizing sequences are tighter for the special cases of simplified Newton and Newton methods than in earlier studies such as Argyros (2004, 2007, 2008) [6,8,12] and Kantorovich and Akilov (1964) [32].

[1]  J. Meza Newton's method , 2011 .

[2]  I. Argyros Convergence and Applications of Newton-type Iterations , 2008 .

[3]  Ioannis K. Argyros,et al.  A semilocal convergence analysis for directional Newton methods , 2010, Math. Comput..

[4]  J. H. Wang,et al.  Convergence of Newton’s Method for Sections on Riemannian Manifolds , 2011, J. Optim. Theory Appl..

[5]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[6]  Changbum Chun,et al.  Third-order family of methods in Banach spaces , 2011, Comput. Math. Appl..

[7]  N. Romero,et al.  On a characterization of some Newton-like methods of R-order at least three , 2005 .

[8]  Chong Li,et al.  Smale's point estimate theory for Newton's method on Lie groups , 2009, J. Complex..

[9]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[10]  J. Miller Numerical Analysis , 1966, Nature.

[11]  I. Argyros Improved Error Bounds for a Chebysheff-Halley-Type Method , 1999 .

[12]  José Antonio Ezquerro,et al.  Chebyshev-like methods and quadratic equations , 1999 .

[13]  Ioannis K. Argyros An improved unifying convergence analysis of Newton’s method in Riemannian manifolds , 2007 .

[14]  Chebysheff-Halley-like methods in Banach spaces , 1997 .

[15]  Sergio Amat,et al.  Third-order iterative methods with applications to Hammerstein equations: A unified approach , 2011, J. Comput. Appl. Math..

[16]  J. A. Ezquerro,et al.  A Super-Halley Type Approximation in Banach Spaces , 2001 .

[17]  David Groisser Newton's method, zeroes of vector fields, and the Riemannian center of mass , 2004, Adv. Appl. Math..

[18]  N. Romero,et al.  General Study of Iterative Processes of R-Order at Least Three under Weak Convergence Conditions , 2007 .

[19]  V. Shamanskii A modification of Newton's method , 1967 .

[20]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[21]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[22]  Y. Cho,et al.  Numerical Methods for Equations and its Applications , 2012 .

[23]  Jean-Pierre Dedieu,et al.  Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds , 2005, J. Complex..

[24]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[25]  Orizon Pereira Ferreira,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..

[26]  J. A. Ezquerro,et al.  New Kantorovich‐Type Conditions for Halley's Method , 2005 .

[27]  I. Argyros,et al.  Newton’s method for approximating zeros of vector fields on Riemannian manifolds , 2009 .

[28]  Dharmendra K. Gupta,et al.  Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces , 2008 .

[29]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.

[30]  O. Smolyanov,et al.  The theory of differentiation in linear topological spaces , 1967 .

[31]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[32]  I. Holopainen Riemannian Geometry , 1927, Nature.

[33]  Felipe Alvarez,et al.  A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..

[34]  S. Amat,et al.  Third-order iterative methods under Kantorovich conditions , 2007 .

[35]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[36]  D. K. Gupta,et al.  Recurrence relations for a Newton-like method in Banach spaces , 2007 .

[37]  I. Argyros Improving the order and rates of convergence for the Super-Halley method in Banach spaces , 1998 .

[38]  C. Kelley A Shamanskii-Like acceleration scheme for nonlinear equations at singular roots , 1986 .

[39]  Ioannis K. Argyros,et al.  A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .

[40]  Lei-Hong Zhang,et al.  Riemannian Newton Method for the Multivariate Eigenvalue Problem , 2010, SIAM J. Matrix Anal. Appl..

[41]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[42]  Ioannis K. Argyros,et al.  Weaker conditions for the convergence of Newton's method , 2012, J. Complex..

[43]  Chong Li,et al.  Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .

[44]  J. A. Ezquerro A modification of the Chebyshev method , 1997 .

[45]  Natalia Romero Álvarez Familias paramétricas de procesos iterativos de alto orden de convergencia , 2006 .

[46]  D. K. Gupta,et al.  Semilocal convergence of a family of third-order methods in Banach spaces under Hölder continuous second derivative ☆ , 2008 .

[47]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..