Modelling of a two-phase thermofluidic oscillator for low-grade heat utilisation: Accounting for irreversible thermal losses
暂无分享,去创建一个
Christos N. Markides | Amparo Galindo | Richard Mathie | Roochi Solanki | A. Galindo | C. Markides | R. Mathie | R. Solanki
[1] Thomas Charles Brannam Smith. Thermally driven oscillations in dynamic applications , 2006 .
[2] Franz Durst,et al. Pulsating laminar pipe flows with sinusoidal mass flux variations , 2005 .
[3] G. W. Swift,et al. Characterization of 350 Hz Thermoacoustic Driven Orifice Pulse Tube Refrigerator with Measurements of the Phase of the Mass Flow and Pressure , 1996 .
[4] W. Worek,et al. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources , 2007 .
[5] Christos N. Markides,et al. The role of pumped and waste heat technologies in a high-efficiency sustainable energy future for the UK , 2013 .
[6] G. Swift,et al. Experiments with an Intrinsically Irreversible Acoustic Heat Engine , 1983 .
[7] G. W. Swift,et al. An intrinsically irreversible thermoacoustic heat engine , 1983 .
[8] Christos N. Markides,et al. Dynamic modelling of a two-phase thermofluidic oscillator for efficient low grade heat utilization: Effect of fluid inertia , 2012 .
[9] Pedro J. Mago,et al. An examination of regenerative organic Rankine cycles using dry fluids , 2008 .
[10] Bin-Juine Huang,et al. System design of orifice pulse-tube refrigerator using linear flow network analysis , 1996 .
[11] J. M. Coulson,et al. Heat Transfer , 2018, A Concise Manual of Engineering Thermodynamics.
[12] G. Swift. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators , 2017 .
[13] C. D. West,et al. Laboratory prototype fluidyne water pump , 1981 .
[14] 永吉 浩,et al. 英語で学ぶ電気回路 = Introduction to electric circuits , 2002 .
[15] Christos N. Markides,et al. Heat transfer augmentation in unsteady conjugate thermal systems – Part II: Applications , 2013 .
[16] G. Swift,et al. A thermoacoustic-Stirling heat engine: detailed study , 2000, The Journal of the Acoustical Society of America.
[17] Ankur Kapil,et al. Integration of low grade heat with district heating , 2011 .
[18] E. Stefanakos,et al. A REVIEW OF THERMODYNAMIC CYCLES AND WORKING FLUIDS FOR THE CONVERSION OF LOW-GRADE HEAT , 2010 .
[19] D. F. Young,et al. A Brief Introduction to Fluid Mechanics , 1996 .
[20] Charles W. Stammers,et al. The operation of the Fluidyne heat engine at low differential temperatures , 1979 .
[21] D M Berchowitz,et al. Linear Dynamics of Free-Piston Stirling Engines , 1985 .
[22] Richard K. Shaltens. Free-Piston Stirling Engines , 1989 .
[23] Christos N. Markides,et al. Heat transfer augmentation in unsteady conjugate thermal systems – Part I: Semi-analytical 1-D framework , 2013 .
[24] Christos N. Markides,et al. A dynamic model for the efficiency optimization of an oscillatory low grade heat engine , 2011 .
[25] Charles Care. Technology for Modelling - Electrical Analogies, Engineering Practice, and the Development of Analogue Computing , 2010, History of Computing.
[26] W. P. Arnott,et al. Thermoacoustic engines , 1991, IEEE 1991 Ultrasonics Symposium,.
[27] Naresh K. Sinha,et al. Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.
[28] J. A. C. Kenté. Thermodynamics of Airbreathing Pulse-Detonation Engines , 2002 .
[29] Thomas C. B. Smith,et al. Power Dense Thermofluidic Oscillators for High Load Applications , 2004 .
[30] J. A. C. Kenté. Fundamentals of Idealized Airbreathing Pulse-Detonation Engines , 2002 .
[31] David Cottrell Mosby. The Fluidyne Heat Engine. , 1978 .
[32] H. J. Leutheusser,et al. Frequency-dependent friction in oscillatory laminar pipe flow , 1974 .
[33] Peter H. Ceperley,et al. A pistonless Stirling engine—The traveling wave heat engine , 1979 .