Tribocorrosion behaviour of hot pressed CoCrMo−HAP biocomposites

[1]  J. Hmeljak,et al.  Long‐term corrosion behavior and biocompatibility testing of titanium‐based alloy covered with nano‐crystalline hydroxyapatite , 2015 .

[2]  F. Toptan,et al.  Tribocorrosion behaviour of hot pressed CoCrMo−Al2O3 composites for biomedical applications , 2014 .

[3]  S. B. Jamaludin,et al.  Microstructure and in-vitro test bioactivity behavior of Co-Cr-Mo (F-75)/hydroxyapatite in phosphate buffered saline solution , 2014 .

[4]  A. Ramalho,et al.  Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys , 2013 .

[5]  F. Toptan,et al.  Corrosion and tribocorrosion behaviour of Al–Si–Cu–Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution , 2013 .

[6]  J. Chen,et al.  Assessing the tribocorrosion performance of Ti–6Al–4V, 316 stainless steel and Monel K500 alloys in artificial seawater , 2013 .

[7]  M. Arenas,et al.  The Role of Mechanically Activated Area on Tribocorrosion of CoCrMo , 2013, Metallurgical and Materials Transactions A.

[8]  Tecnología Avanzada,et al.  Corrosion Behavior of AISI 409Nb Stainless Steel Manufactured by Powder Metallurgy Exposed in H 2 SO 4 and NaCl Solutions , 2013 .

[9]  W. Zhou,et al.  First‐principles study on influence of alloying elements on electrochemical stability of cobalt‐base alloys , 2012 .

[10]  F. Toptan,et al.  Reciprocal dry sliding wear behaviour of B4Cp reinforced aluminium alloy matrix composites , 2012 .

[11]  Jingli Luo,et al.  Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment , 2011 .

[12]  M. Wimmer,et al.  Tribocorrosion behavior of CoCrMo alloy for hip prosthesis as a function of loads: a comparison between two testing systems. , 2011, Wear : an international journal on the science and technology of friction lubrication and wear.

[13]  Satya Prakash,et al.  Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy , 2011 .

[14]  C. Figueiredo-Pina,et al.  Corrosion-wear evaluation of a UHMWPE/Co–Cr couple in sliding contact under relatively low contact stress in physiological saline solution , 2011 .

[15]  A. C. Vieira,et al.  Influence of SiC reinforcement particles on the tribocorrosion behaviour of Al–SiCp FGMs in 0.05M NaCl solution , 2011 .

[16]  D. L. Majid,et al.  Fabrication of functionally graded Hydroxyapatite-Titanium by applying optimal sintering procedure and powder metallurgy , 2011 .

[17]  Mark Taylor,et al.  Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction , 2011, Journal of materials science. Materials in medicine.

[18]  A. I. Muñoz,et al.  Influence of electrochemical potential on the tribocorrosion behaviour of high carbon CoCrMo biomedical alloy in simulated body fluids by electrochemical impedance spectroscopy , 2010 .

[19]  T. Kumar,et al.  In situ composite coating of titania-hydroxyapatite on commercially pure titanium by microwave processing , 2010 .

[20]  M. Bahrololoom,et al.  In vitro electrochemical evaluation and phase purity of natural hydroxyapatite coating on medical grade 316L stainless steel , 2009 .

[21]  A. Olszyna,et al.  Co–Cr–Mo-based composite reinforced with bioactive glass , 2009 .

[22]  J. Ferreira,et al.  Corrosion aspects of metallic implants — An overview , 2008 .

[23]  Stefano Mischler,et al.  Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation , 2008 .

[24]  Amit Bandyopadhyay,et al.  Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. , 2008, Acta biomaterialia.

[25]  I. Demetrescu,et al.  Enhancing Corrosion Resistance of CoCr Alloy using Bioactive Phosphate Deposition , 2008 .

[26]  A. Boccaccini,et al.  Multi‐walled Carbon Nanotube‐Reinforced Hydroxyapatite Layers on Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD) , 2008 .

[27]  D. Dowson,et al.  Tribocorrosion in implants- : assessing high carbon and low carbon Co-Cr-Mo alloys by in situ electrochemical measurements , 2006 .

[28]  Jingchuan Zhu,et al.  In vivo study on biocompatibility and bonding strength of Ti/Ti–20 vol.% HA/Ti–40 vol.% HA functionally graded biomaterial with bone tissues in the rabbit , 2006 .

[29]  G. Ilevbare Effect of Sulfate on the Passive and Crevice Corrosion Properties of Alloy 22 in 4 M Sodium Chloride , 2006 .

[30]  Venkata K. Jasti,et al.  A Review of Dry Particulate Lubrication: Powder and Granular Materials , 2006 .

[31]  B. Elsener,et al.  Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum , 2005 .

[32]  R. Wood,et al.  Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environments , 2005 .

[33]  D. Cortes,et al.  Biomimetic apatite formation on a CoCrMo alloy by using wollastonite, bioactive glass or hydroxyapatite , 2005 .

[34]  W. Lanford,et al.  Interface reaction/diffusion in hydroxylapatite-coated SS316L and CoCrMo alloys , 2004 .

[35]  I. Bae,et al.  Phase and microstructural development in alumina sol–gel coatings on CoCr alloy , 2004, Journal of materials science. Materials in medicine.

[36]  L. A. Rocha,et al.  Tribocorrosion Studies in Centrifugally Cast Al-Matrix SiCp-reinforced Functionally Graded Composites , 2004 .

[37]  Motohiro Uo,et al.  Biocompatibility of materials and development to functionally graded implant for bio-medical application , 2004 .

[38]  G. Thompson,et al.  Corrosion behaviour of powder metallurgical and cast Al–Zn–Mg base alloys , 2004 .

[39]  Yasuhiro Fukui,et al.  A functionally graded titanium/hydroxyapatite film obtained by sputtering , 2002, Journal of materials science. Materials in medicine.

[40]  Stefano Mischler,et al.  Electrochemical methods in tribocorrosion: a critical appraisal , 2001 .

[41]  M. Trunec,et al.  Kinetics of thermal decomposition of hydroxyapatite bioceramics , 1999 .

[42]  Wang Shidong,et al.  Hydroxyapatite–Ti functionally graded biomaterial fabricated by powder metallurgy , 1999 .

[43]  F. Lin,et al.  Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. , 1999, Biomaterials.

[44]  D. Landolt,et al.  Tribocorrosion behaviour of Fe–17Cr stainless steel in acid and alkaline solutions , 1999 .

[45]  C. Fang,et al.  Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminum matrix composites , 1999 .

[46]  E. Otero,et al.  Corrosion behaviour of aisi 304l and 316l stainless steels prepared by powder metallurgy in the presence of sulphuric and phosphoric acid , 1998 .

[47]  K. Seah,et al.  The influence of pore morphology on corrosion , 1998 .

[48]  F. Pérez,et al.  The corrosion behaviour of AISI 304L AND 316L stainless steels prepared by powder metallurgy in the presence of organic acids , 1997 .

[49]  K. Seah,et al.  A comparison between the corrosion behaviour of sintered and unsintered porous titanium , 1995 .

[50]  J. Bolton,et al.  Production of Porous Sintered Co–Cr–Mo Alloys for Possible Surgical Implant Applications: Part 2: Corrosion Behaviour , 1995 .

[51]  K A Mann,et al.  Mixed mode fracture characterization of hydroxylapatite-titanium alloy interface. , 1994, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[52]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[53]  R. Rawlings,et al.  A functionally gradient material produced by a powder metallurgical process , 1993, Journal of Materials Science Letters.

[54]  C. Crowe,et al.  Corrosion Behavior of SiC / Al Metal Matrix Composites , 1983 .