Evaluating the efficiency of physical visualizations

Data sculptures are an increasingly popular form of physical visualization whose purposes are essentially artistic, communicative or educational. But can physical visualizations help carry out actual information visualization tasks? We present the first infovis study comparing physical to on-screen visualizations. We focus on 3D visualizations, as these are common among physical visualizations but known to be problematic on computers. Taking 3D bar charts as an example, we show that moving visualizations to the physical world can improve users' efficiency at information retrieval tasks. In contrast, augmenting on-screen visualizations with stereoscopic rendering alone or with prop-based manipulation was of limited help. The efficiency of physical visualizations seems to stem from features that are unique to physical objects, such as their ability to be touched and their perfect visual realism. These findings provide empirical motivation for current research on fast digital fabrication and self-reconfiguring interfaces.

[1]  Tamara Munzner,et al.  Process and Pitfalls in Writing Information Visualization Research Papers , 2008, Information Visualization.

[2]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[3]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[4]  Majken Kirkegaard Rasmussen,et al.  Shape-changing interfaces: a review of the design space and open research questions , 2012, CHI.

[5]  James T. Todd,et al.  The Visual Perception of Three- Dimensional Structure from Motion , 1995 .

[6]  Hiroshi Ishii,et al.  Radical atoms: beyond tangible bits, toward transformable materials , 2012, INTR.

[7]  Andy Cockburn,et al.  Evaluating the effectiveness of spatial memory in 2D and 3D physical and virtual environments , 2002, CHI.

[8]  Tovi Grossman,et al.  An evaluation of depth perception on volumetric displays , 2006, AVI '06.

[9]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[10]  Ben Shneiderman,et al.  Why Not Make Interfaces Better than 3D Reality? , 2003, IEEE Computer Graphics and Applications.

[11]  Shumin Zhai,et al.  Quantifying coordination in multiple DOF movement and its application to evaluating 6 DOF input devices , 1998, CHI.

[12]  Fotis Sotiropoulos,et al.  Supporting internal visualization of biomedical datasets via 3D rapid prototypes and sketch-based gestures , 2011, I3D '11.

[13]  P. Milgram,et al.  A Taxonomy of Mixed Reality Visual Displays , 1994 .

[14]  Shumin Zhai,et al.  The influence of muscle groups on performance of multiple degree-of-freedom input , 1996, CHI.

[15]  Bernhard Preim,et al.  Usability Comparison of Mouse-Based Interaction Techniques for Predictable 3d Rotation , 2005, Smart Graphics.

[16]  Howard Rheingold,et al.  Virtual Reality , 1991 .

[17]  Clayton Lewis,et al.  A problem-oriented classification of visualization techniques , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[18]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[19]  Carl Machover,et al.  Virtual reality , 1994, IEEE Computer Graphics and Applications.

[20]  G. Cumming Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis , 2011 .

[21]  John T. Stasko,et al.  Casual Information Visualization: Depictions of Data in Everyday Life , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  Hiroshi Ishii,et al.  Strata/ICC: physical models as computational interfaces , 2001, CHI Extended Abstracts.

[23]  Mats Lind,et al.  Evaluating 2D and 3D visualizations of spatiotemporal information , 2010, TAP.

[24]  Pat Hanrahan,et al.  An Extension of Wilkinson’s Algorithm for Positioning Tick Labels on Axes , 2010, IEEE Transactions on Visualization and Computer Graphics.

[25]  Stephen A. Brewster,et al.  Clutching at straws: using tangible interaction to provide non-visual access to graphs , 2010, CHI.

[26]  Jun Rekimoto,et al.  Lumen: interactive visual and shape display for calm computing , 2004, SIGGRAPH '04.

[27]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[28]  Ravin Balakrishnan,et al.  Reaching for objects in VR displays: lag and frame rate , 1994, TCHI.

[29]  Hiroshi Ishii,et al.  Direct and gestural interaction with relief: a 2.5D shape display , 2011, UIST '11.

[30]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[31]  Shumin Zhai,et al.  More than dotting the i's --- foundations for crossing-based interfaces , 2002, CHI.

[32]  Niklas Elmqvist,et al.  Graphical Perception of Multiple Time Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[33]  Nathalie Henry,et al.  Exploring large social networks with matrix-based representations , 2008 .

[34]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[35]  Colin Ware,et al.  Frames of reference in virtual object rotation , 2004, APGV '04.

[36]  Jeff Rose,et al.  Rotating virtual objects with real handles , 1999, TCHI.

[37]  Wolfgang Stuerzlinger,et al.  3D Scene Manipulation with 2D Devices and Constraints , 2001, Graphics Interface.

[38]  Andrew Vande Moere,et al.  Beyond the Tyranny of the Pixel: Exploring the Physicality of Information Visualization , 2008, 2008 12th International Conference Information Visualisation.

[39]  Robert van Liere,et al.  Tangible props for scientific visualization: concept, requirements, application , 2009, Virtual Reality.

[40]  Matthias Hauswirth,et al.  LagAlyzer: A latency profile analysis and visualization tool , 2010, 2010 IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS).

[41]  E. Gentaz,et al.  The visuo-haptic and haptic exploration of letters increases the kindergarten-children's understanding of the alphabetic principle , 2004 .

[42]  Joe Tullio,et al.  Usability analysis of 3D rotation techniques , 1997, UIST '97.

[43]  Colin Ware,et al.  Reevaluating stereo and motion cues for visualizing graphs in three dimensions , 2005, APGV '05.

[44]  W. McCarthy Programmable matter , 2000, Nature.

[45]  Jeff Sauro,et al.  Average task times in usability tests: what to report? , 2010, CHI 2010.

[46]  Ken Hinckley,et al.  Passive real-world interface props for neurosurgical visualization , 1994, CHI '94.

[47]  Mary Czerwinski,et al.  An initial examination of ease of use for 2D and 3D information visualizations of web content , 2000, Int. J. Hum. Comput. Stud..

[48]  Margaret Wilson,et al.  Six views of embodied cognition , 2002, Psychonomic bulletin & review.