Analysing Synchronization Phenomena from Bivariate Data by Means of the Hilbert Transform

We use the analytic signal approach based on the Hilbert transform to compute the phase di erence between two non-stationary signals and nd out epochs of phase locking. In: Nonlinear Analysis of Physiological Data, Edited by H. Kantz, J. Kurths, and G. Mayer{Kress (Springer, Berlin, 1998), pp. 91-99

[1]  P. F. Panter Modulation, noise, and spectral analysis , 1965 .

[2]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  N. Packard,et al.  Power spectral analysis of a dynamical system , 1980 .

[4]  Mark J. T. Smith,et al.  Introduction to Digital Signal Processing: A Computer Laboratory Textbook , 1991 .

[5]  B. Pompe Measuring statistical dependences in a time series , 1993 .

[6]  Michael Feldman,et al.  Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method 'Freevib' , 1994 .

[7]  Thomas P. Krauss,et al.  Signal processing toolbox for use with MATLAB : ユーザーズガイド , 1994 .

[8]  Michael Schanz,et al.  A theoretical model of sinusoidal forearm tracking with delayed visual feedback , 1995 .

[9]  Tass,et al.  Delay-induced transitions in visually guided movements. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Juergen Kurths,et al.  Synchronization in a population of globally coupled chaotic oscillators , 1996 .

[11]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[12]  Parlitz,et al.  Experimental observation of phase synchronization. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .