Input-Driven Tissue P Automata

We introduce several variants of input-driven tissue P automata where the rules to be applied only depend on the input symbol. Both strings and multisets are considered as input objects; the strings are either read from an input tape or defined by the sequence of symbols taken in, and the multisets are given in an input cell at the beginning of a computation, enclosed in a vesicle. Additional symbols generated during a computation are stored in this vesicle, too. An input is accepted when the vesicle reaches a final cell and it is empty. The computational power of some variants of input-driven tissue P automata is illustrated by examples and compared with the power of the input-driven variants of other automata as register machines and counter automata.

[1]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[2]  K. Mehlhorn Pebbling Moutain Ranges and its Application of DCFL-Recognition , 1980, ICALP.

[3]  Patrick W. Dymond Input-Driven Languages are in log n Depth , 1988, Inf. Process. Lett..

[4]  Alexander Okhotin,et al.  Descriptional complexity of unambiguous input-driven pushdown automata , 2015, Theor. Comput. Sci..

[5]  Rudolf Freund,et al.  Graph-Controlled Insertion-Deletion Systems , 2010, DCFS.

[6]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[7]  Manfred Kudlek,et al.  Multiset Pushdown Automata , 2009, Fundam. Informaticae.

[8]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[9]  Alexander Okhotin,et al.  State complexity of operations on input-driven pushdown automata , 2017, J. Comput. Syst. Sci..

[10]  John E. Hershey,et al.  Computation , 1991, Digit. Signal Process..

[11]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[12]  Alexander Okhotin,et al.  Input-driven pushdown automata: nondeterminism and unambiguity , 2013, NCMA.

[13]  Martin Kutrib,et al.  Queue Automata: Foundations and Developments , 2018, Reversibility and Universality.

[14]  Artiom Alhazov,et al.  (Tissue) P Systems with Vesicles of Multisets , 2017, AFL.

[15]  Martin Kutrib,et al.  Tinput-Driven Pushdown, Counter, and Stack Automata , 2017, Fundam. Informaticae.

[16]  Gheorghe Paun,et al.  On the Power of Membrane Computing , 1999, J. Univers. Comput. Sci..

[17]  Alexander Okhotin,et al.  Input-Driven Pushdown Automata with Limited Nondeterminism - (Invited Paper) , 2014, Developments in Language Theory.

[18]  Rudolf Freund,et al.  How to Obtain Computational Completeness in P Systems with One Catalyst , 2013, MCU.

[19]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[20]  Andrei Paun,et al.  The power of communication: P systems with symport/antiport , 2002, New Generation Computing.

[21]  Artiom Alhazov,et al.  Sequential P Systems with Regular Control , 2012, Int. Conf. on Membrane Computing.

[22]  Erzsébet Csuhaj-Varjú,et al.  P Automata or Purely Communicating Accepting P Systems , 2002, WMC-CdeA.

[23]  Alfonso Rodríguez-Patón,et al.  A New Class of Symbolic Abstract Neural Nets: Tissue P Systems , 2002, COCOON.

[24]  Rudolf Freund,et al.  Tissue P Systems and (Mem)Brane Systems with Mate and Drip Operations Working on Strings , 2007, Electron. Notes Theor. Comput. Sci..

[25]  Martin Kutrib,et al.  Input-Driven Stack Automata , 2012, IFIP TCS.

[26]  György Vaszil,et al.  P automata , 2010, Scholarpedia.

[27]  Rudolf Freund,et al.  Matrix Languages, Register Machines, Vector Addition Systems , 2005 .

[28]  Rudolf Freund P Automata: New ideas and results , 2016, NCMA.

[29]  Burchard von Braunmühl,et al.  Input-Driven Languages are Recognized in log n Space , 1983, FCT.

[30]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[31]  Victor Mitrana,et al.  Multiset Automata , 2000, WMP.

[32]  Rudolf Freund,et al.  Generating and accepting P systems with minimal left and right insertion and deletion , 2013, Natural Computing.