Uso de técnicas de aprendizagem para classificação e recuperação de imagens

Tecnicas de aprendizagem vem sendo empregadas em diversas areas de aplicacao (medicina, biologia, seguranca, entre outras). Neste trabalho, buscou-se avaliar o uso da tecnica de Programacao Genetica (PG) em tarefas de recuperacao e classificacao de imagens. PG busca solucoes otimas inspirada pela teoria de selecao natural das especies. Individuos mais aptos (melhores solucoes) tendem a evoluir e se reproduzir nas geracoes futuras. As principais contribuicoes deste trabalho sao: implementacao de um classificador de imagens utilizando PG para combinar evidencias visuais (descritores de imagens) e assim, obter melhores resultados com relacao a eficacia de classificacao; Comparacao de PG com outras tecnicas de aprendizagem em tarefas de recuperacao de imagens por conteudo; Uso de regras de associacao para recuperacao de imagens Abstract

[1]  Quan Liu,et al.  An Orientation Independent Texture Descriptor for Image Retrieval , 2007, 2007 International Conference on Communications, Circuits and Systems.

[2]  S. Goldenstein,et al.  Randomização progressiva para esteganalise , 2006 .

[3]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[4]  Xu Qian,et al.  Medical Image Classification Based on Fuzzy Support Vector Machines , 2008, 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA).

[5]  Hyoung-Joo Kim,et al.  A fast content-based indexing and retrieval technique by the shape information in large image database , 2001, J. Syst. Softw..

[6]  Carla E. Brodley,et al.  Interactive Content-based Image Retrieval Using Relevance Feedback , 2002 .

[7]  J.C. Pereira,et al.  Optimum path forest classifier applied to laryngeal pathology detection , 2008, 2008 15th International Conference on Systems, Signals and Image Processing.

[8]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Wei-Pang Yang,et al.  Medical image classification by supervised machine learning , 2006 .

[10]  Ricardo da Silva Torres,et al.  Descritores de forma baseados em Tensor Scale , 2007 .

[11]  Weiguo Fan,et al.  Genetic Programming-Based Discovery of Ranking Functions for Effective Web Search , 2005, J. Manag. Inf. Syst..

[12]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[13]  Kai Huang,et al.  Fingerprint Classification Based on Extraction and Analysis of Singularities and Pseudoridges , 2001, VIP.

[14]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[15]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[16]  Pável Calado,et al.  A combined component approach for finding collection-adapted ranking functions based on genetic programming , 2007, SIGIR.

[17]  Ricardo da Silva Torres,et al.  Reconhecimento semi-automatico e vetorização de regiões em imagens de sensoriamento remoto , 2009 .

[18]  Thore Graepel,et al.  Large Margin Rank Boundaries for Ordinal Regression , 2000 .

[19]  Adam Williams,et al.  Content-based image retrieval using joint correlograms , 2007, Multimedia Tools and Applications.

[20]  R. A. Schonengertt Techniques for Image Processing and Classification in Remote Sensing , 1983 .

[21]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[22]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Stephan Volmer,et al.  Color co-occurrence descriptors for querying-by-example , 1998, Proceedings 1998 MultiMedia Modeling. MMM'98 (Cat. No.98EX200).

[24]  Michael Unser,et al.  Sum and Difference Histograms for Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[26]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[27]  Alexandre X. Falcão,et al.  A Comparative Study among Pattern Classifiers in Interactive Image Segmentation , 2009, 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing.

[28]  Stephen J. McKenna,et al.  Learning Query-Dependent Distance Metrics for Interactive Image Retrieval , 2009, ICVS.

[29]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[30]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[31]  Adam Tofilski,et al.  DrawWing, a program for numerical description of insect wings. , 2004 .

[32]  Tao Qin,et al.  LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .

[33]  Qi Tian,et al.  Incorporate support vector machines to content-based image retrieval with relevance feedback , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[34]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[36]  Edward A. Fox,et al.  Intelligent GP fusion from multiple sources for text classification , 2005, CIKM '05.

[37]  Edward A. Fox,et al.  Combining structural and citation-based evidence for text classification , 2004, CIKM '04.

[38]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[39]  Nenghai Yu,et al.  Multiple-instance ranking: Learning to rank images for image retrieval , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Fatos T. Yarman-Vural,et al.  SASI: a generic texture descriptor for image retrieval , 2003, Pattern Recognit..

[41]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[42]  Bo Zhang,et al.  Support vector machine learning for image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[43]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[44]  Bo Tao,et al.  Texture Recognition and Image Retrieval Using Gradient Indexing , 2000, J. Vis. Commun. Image Represent..

[45]  Hong Zhao,et al.  Automatic feature weight assignment based on genetic algorithm for image retrieval , 2003, IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003.

[46]  Bir Bhanu,et al.  Object detection in multi-modal images using genetic programming , 2004, Appl. Soft Comput..

[47]  Celso Tetsuo Nagase Suzuki,et al.  Segmentação de imagens de prasitos intestinais do homem , 2007 .

[48]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[49]  Shawn Newsam,et al.  A texture descriptor for image retrieval and browsing , 1999, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL'99).

[50]  Mario A. Nascimento,et al.  A compact and efficient image retrieval approach based on border/interior pixel classification , 2002, CIKM '02.

[51]  Harris Wu,et al.  The effects of fitness functions on genetic programming-based ranking discovery for Web search: Research Articles , 2004 .

[52]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[53]  Tie-Yan Liu,et al.  Adapting ranking SVM to document retrieval , 2006, SIGIR.

[54]  Edward A. Fox,et al.  A genetic programming framework for content-based image retrieval , 2009, Pattern Recognit..

[55]  Wagner Meira,et al.  Learning to rank at query-time using association rules , 2008, SIGIR '08.

[56]  Jamshid Shanbehzadeh,et al.  Image retrieval based on shape similarity by edge orientation autocorrelogram , 2003, Pattern Recognit..

[57]  Ajay Kumar,et al.  Comparison and combination of iris matchers for reliable personal authentication , 2010, Pattern Recognit..

[58]  Osmar R. Zaïane,et al.  Application of Data Mining Techniques for Medical Image Classification , 2001, MDM/KDD.

[59]  Ricardo da Silva Torres,et al.  Content-Based Image Retrieval: Theory and Applications , 2006, RITA.

[60]  Ji Zhang,et al.  Image Mining: Issues, Frameworks and Techniques , 2001, MDM/KDD.

[61]  William B. Langdon,et al.  Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! , 1998 .

[62]  Alistair Moffat,et al.  Exploring the similarity space , 1998, SIGF.

[63]  Patrick J. Flynn,et al.  Image understanding for iris biometrics: A survey , 2008, Comput. Vis. Image Underst..

[64]  Jitendra Malik,et al.  Image Retrieval and Classification Using Local Distance Functions , 2006, NIPS.

[65]  Chin-Chen Chang,et al.  Color image retrieval technique based on color features and image bitmap , 2007, Inf. Process. Manag..