Discovery and mechanistic characterization of a structurally-unique membrane active peptide.

[1]  Elif Ozkirimli,et al.  Membrane Active Peptides and Their Biophysical Characterization , 2018, Biomolecules.

[2]  R. Mirnejad,et al.  Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. , 2018, Microbial drug resistance.

[3]  Wan-Chih Su,et al.  Pulsatile Gating of Giant Vesicles Containing Macromolecular Crowding Agents Induced by Colligative Nonideality. , 2018, Journal of the American Chemical Society.

[4]  Andrew L. Ferguson,et al.  Machine learning-enabled discovery and design of membrane-active peptides. , 2017, Bioorganic & medicinal chemistry.

[5]  Jolene L. Lau,et al.  Therapeutic peptides: Historical perspectives, current development trends, and future directions. , 2017, Bioorganic & medicinal chemistry.

[6]  Guangshun Wang,et al.  Host defense antimicrobial peptides as antibiotics: design and application strategies. , 2017, Current opinion in chemical biology.

[7]  Kit S Lam,et al.  Combinatorial Library Screening with Liposomes for Discovery of Membrane Active Peptides. , 2017, ACS combinatorial science.

[8]  Jing He,et al.  Mechanism Matters: A Taxonomy of Cell Penetrating Peptides. , 2015, Trends in biochemical sciences.

[9]  Frank Wien,et al.  Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy , 2015, Proceedings of the National Academy of Sciences.

[10]  Lichen Yin,et al.  Helical Poly(arginine) Mimics with Superior Cell-Penetrating and Molecular Transporting Properties. , 2013, Chemical science.

[11]  Marcus D. Collins,et al.  Giant liposome preparation for imaging and patch-clamp electrophysiology. , 2013, Journal of visualized experiments : JoVE.

[12]  F. Milletti,et al.  Cell-penetrating peptides: classes, origin, and current landscape. , 2012, Drug discovery today.

[13]  A. Blume,et al.  Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions. , 2012, Biochimica et biophysica acta.

[14]  Vladimir P Torchilin,et al.  Cell-penetrating peptides: breaking through to the other side. , 2012, Trends in molecular medicine.

[15]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[16]  H. Vogel,et al.  The expanding scope of antimicrobial peptide structures and their modes of action. , 2011, Trends in biotechnology.

[17]  William C Wimley,et al.  Describing the mechanism of antimicrobial peptide action with the interfacial activity model. , 2010, ACS chemical biology.

[18]  S. K. Shukla,et al.  Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. , 2010, Biochimie.

[19]  Ramesh Rathinakumar,et al.  Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. , 2009, Journal of the American Chemical Society.

[20]  K. Lohner New strategies for novel antibiotics: peptides targeting bacterial cell membranes. , 2009, General physiology and biophysics.

[21]  G. Divita,et al.  Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics , 2009, British journal of pharmacology.

[22]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[23]  Graham Bell,et al.  Experimental evolution of resistance to an antimicrobial peptide , 2006, Proceedings of the Royal Society B: Biological Sciences.

[24]  M. Rhee,et al.  Mechanism of Uptake of C105Y, a Novel Cell-penetrating Peptide* , 2006, Journal of Biological Chemistry.

[25]  M. Giacca,et al.  Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. , 2005, The Biochemical journal.

[26]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[27]  S. Futaki,et al.  Arginine-rich Peptides , 2001, The Journal of Biological Chemistry.

[28]  K. Pattabiraman,et al.  The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  H. Vogel,et al.  Diversity of antimicrobial peptides and their mechanisms of action. , 1999, Biochimica et biophysica acta.

[30]  F C Kafatos,et al.  Phylogenetic perspectives in innate immunity. , 1999, Science.

[31]  Kit S. Lam,et al.  The “One-Bead-One-Compound” Combinatorial Library Method , 1997 .

[32]  K. Lam,et al.  A new type of synthetic peptide library for identifying ligand-binding activity , 1992, Nature.

[33]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[34]  S. Moore,et al.  Photometric ninhydrin method for use in the chromatography of amino acids. , 1948, The Journal of biological chemistry.

[35]  J. Bradshaw,et al.  Cationic Antimicrobial Peptides , 2012, BioDrugs.

[36]  G. Meer,et al.  Lipid Map of the Mammalian Cell , 2011 .

[37]  N. Greenfield Using circular dichroism spectra to estimate protein secondary structure , 2007, Nature Protocols.

[38]  Y. Shai,et al.  Mode of action of membrane active antimicrobial peptides. , 2002, Biopolymers.

[39]  R. Collier,et al.  Site-Directed Spin Labeling of Proteins , 2000 .

[40]  Kit S. Lam,et al.  A new type of synthetic peptide library for identifying ligand-binding activity , 1992, Nature.