Thermal design of power GaN FETs in microstrip and coplanar MMICs

The paper presents a discussion on the thermal design of integrated power GaN devices. After a short outline of some critical thermal modelling issues, design guidelines are proposed on the basis of thermal simulations; the results presented suggest that for room temperature applications SiC substrate thinning (thus implying a microstrip process) is not mandatory from a thermal standpoint. This would open the possibility for coplanar GaN MMICs, already exploited for low-noise amplifiers, also in power circuits.

[1]  E. A. Burgemeister,et al.  Thermal conductivity and electrical properties of 6H silicon carbide , 1979 .

[2]  Umesh K. Mishra,et al.  AlGaN/GaN High Electron Mobility Transistors , 2007 .

[3]  Moo Whan Shin,et al.  Thermal modeling and measurement of AlGaN-GaN HFETs built on sapphire and SiC substrates , 2004 .

[4]  G. Simin,et al.  Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill , 2003, IEEE Electron Device Letters.

[5]  G. Wachutka,et al.  Electrothermal analysis of SiC power devices using physically-based device simulation , 2000 .

[6]  Giovanni Ghione,et al.  High-resolution self-consistent thermal modelling of multi-gate power GaAs MESFETs , 1989, International Technical Digest on Electron Devices Meeting.

[7]  Harry F. Cooke,et al.  Precise technique finds FET thermal resistance , 1986 .

[8]  H.A. Hung,et al.  Thermal resistance calculation of AlGaN-GaN devices , 2004, IEEE Transactions on Microwave Theory and Techniques.

[9]  J. Kuzmík,et al.  Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method , 2002 .

[10]  G. A. Slack,et al.  Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond , 1964 .

[11]  Fabrizio Bonani,et al.  On the application of the Kirchhoff transformation to the steady-state thermal analysis of semiconductor devices with temperature-dependent and piecewise inhomogeneous thermal conductivity , 1995 .

[12]  Claudio Lanzieri,et al.  Thermal resistance measurement of GaAs MESFETs by means of photocurrent spectrum analysis and comparison with simulations , 2005 .

[13]  Marco Pirola,et al.  A new, efficient approach to the large-scale thermal modeling of III-V devices and integrated circuits , 1993, Proceedings of IEEE International Electron Devices Meeting.

[14]  Harald Mehling,et al.  Experimental and Theoretical Analysis of the High Temperature Thermal Conductivity of Monocrystalline SiC , 1997 .

[15]  J. Palmour,et al.  Progress in the industrial production of SiC substrates for semiconductor devices , 2001 .

[16]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[17]  J. Pankove,et al.  Thermal Conductivity of GaN, 25-360 K , 1977 .

[18]  E. Velmre,et al.  Modeling of Lattice Heat Conductivity and Thermopower in SiC Considering the Four-Phonon Scattering Processes , 2003 .

[19]  S. Nishino,et al.  The Development of 2in 6H-SiC Wafer with High Thermal-Conductivity , 2002 .

[20]  T. Chow,et al.  SiC Power Devices , 1996 .

[21]  H. A. Hung,et al.  Accurate determination of thermal resistance of FETs , 2005, IEEE Transactions on Microwave Theory and Techniques.

[22]  J. Palmour,et al.  Progress in SiC : from material growth to commercial device development , 1999 .

[23]  Christian Fazi,et al.  Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications , 2000 .

[24]  Keiichi Yamamoto,et al.  Raman microprobe study on temperature distribution during cw laser heating of silicon on sapphire , 1986 .

[25]  M. Shur,et al.  Self-heating in high-power AlGaN-GaN HFETs , 1998, IEEE Electron Device Letters.

[26]  I. Ferguson,et al.  HIGH SPATIAL RESOLUTION THERMAL CONDUCTIVITY OF LATERAL EPITAXIAL OVERGROWN GAN/SAPPHIRE (0001) USING A SCANNING THERMAL MICROSCOPE , 1999 .