One Eilenberg Theorem to Rule Them All

Eilenberg-type correspondences, relating varieties of languages (e.g. of finite words, infinite words, or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory. Numerous such correspondences are known in the literature. We demonstrate that they all arise from the same recipe: one models languages and the algebras recognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main contribution is a generic variety theorem that covers e.g. Wilke's and Pin's work on $\infty$-languages, the variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two previous categorical approaches of Boja\'nczyk and of Ad\'amek et al. In addition it gives a number of new results, such as an extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words.

[1]  Hilary A. Priestley,et al.  Ordered Topological Spaces and the Representation of Distributive Lattices , 1972 .

[2]  Stefan Milius,et al.  Profinite Monads, Profinite Equations, and Reiterman's Theorem , 2015, FoSSaCS.

[3]  F. E. J. Linton,et al.  An outline of functorial semantics , 1969 .

[4]  Thomas Wilke,et al.  An Algebraic Characterization of Frontier Testable Tree Languages , 1996, Theor. Comput. Sci..

[5]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[6]  Henning Urbat,et al.  A Fibrational Approach to Automata Theory , 2015, CALCO.

[7]  Samuel Eilenberg Automata, Languages and Machines, Vol. B , 1976 .

[8]  Denis Kuperberg,et al.  Varieties of Cost Functions , 2016, STACS.

[9]  Libor Polák Syntactic Semiring of a Language , 2001, MFCS.

[10]  Bernhard Banaschewski,et al.  The Birkhoff Theorem for varieties of finite algebras , 1983 .

[11]  Nicolas Bedon,et al.  Schützenberger and Eilenberg theorems for words on linear orderings , 2012, J. Comput. Syst. Sci..

[12]  Jorge Almeida On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics , 1990 .

[13]  Christophe Reutenauer Séries formelles et algèbres syntactiques , 1980 .

[14]  Peter R. Jones Profinite categories, implicit operations and pseudovarieties of categories , 1996 .

[15]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .

[16]  Stefan Milius,et al.  Generalized Eilenberg Theorem I: Local Varieties of Languages , 2014, FoSSaCS.

[17]  STEPHrN L. BLOOM,et al.  Varieties of Ordered Algebras , 1976, J. Comput. Syst. Sci..

[18]  Magnus Steinby,et al.  Tree algebras and varieties of tree languages , 2007, Theor. Comput. Sci..

[19]  Olivier Carton,et al.  An Eilenberg Theorem for Words on Countable Ordinals , 1998, LATIN.

[20]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[21]  Thomas Wilke An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.

[22]  Jirí Adámek,et al.  Syntactic Monoids in a Category , 2015, CALCO.

[23]  G. Birkhoff Rings of sets , 1937 .

[24]  Tadeusz Litak,et al.  Stone duality for nominal Boolean algebras with ‘ new ’ : topologising Banonas , 2011 .

[25]  Jean-Éric Pin Positive Varieties and Infinite Words , 1998, LATIN.

[26]  Stefan Milius,et al.  Varieties of Languages in a Category , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[27]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[28]  Felix Hueber,et al.  Locally Presentable And Accessible Categories , 2016 .

[29]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[30]  Howard Straubing,et al.  On Logical Descriptions of Regular Languages , 2002, LATIN.

[31]  N. Pippenger,et al.  Regular languages and stone duality , 1997, Theory of Computing Systems.

[32]  Bernhard Banaschewski,et al.  Tensor Products and Bimorphisms , 1976, Canadian Mathematical Bulletin.

[33]  Serge Grigorieff,et al.  Duality and Equational Theory of Regular Languages , 2008, ICALP.

[34]  Mikolaj Bojanczyk,et al.  Recognisable Languages over Monads , 2015, DLT.