Determination of γ-γ' lattice misfit in a single-crystal nickel-based superalloy using convergent beam electron diffraction aided by finite element calculations.

In single-crystal nickel-based superalloys, the lattice mismatch associated with interface coherency between γ matrix and γ' precipitates has a strong influence on mechanical properties. The unconstrained lattice misfit in a single-crystal of the MC2 nickel-based superalloy is determined using convergent beam electron diffraction measurements and finite element calculations. The apparent lattice parameters of both constrained phases are obtained in thin foils, using a new multi-pattern approach, which allows for unambiguous determination of all the lattice parameters considering the real symmetry of the strained crystals. Finite element calculations are used to establish relations between the constrained and unconstrained lattice parameters, with the stress relaxation resulting from the thin foil geometry taken into account.

[1]  M. Nathal,et al.  γ′ coarsening in high volume fraction nickel-base alloys , 1990 .

[2]  H. Fraser,et al.  Investigation of techniques for measuring lattice mismatch in a rhenium containing nickel base superalloy , 1988 .

[3]  D. Blavette,et al.  Phase composition and chemical order in the single crystal nickel base superalloy MC2 , 1994 .

[4]  J. Fundenberger,et al.  Polycrystal orientation maps from TEM. , 2003, Ultramicroscopy.

[5]  A. Morawiec An algorithm for refinement of lattice parameters using CBED patterns. , 2007, Ultramicroscopy.

[6]  A. Fredholm Monocristaux d'alliages base nickel : relation entre composition, microstructure et comportement en fluage à haute température , 1987 .

[7]  F. Louchet,et al.  A model for low stress cross-diffusional creep and directional coarsening of superalloys , 1997 .

[8]  A. Pineau Influence of uniaxial stress on the morphology of coherent precipitates during coarsening—elastic energy considerations , 1976 .

[9]  T. Grosdidier,et al.  On the dissolution mechanisms of γ′ precipitates in nickel-based superalloys , 1994 .

[10]  F. Hüe,et al.  Nanoscale holographic interferometry for strain measurements in electronic devices , 2008, Nature.

[11]  G. S. Ansell,et al.  The influence of coherency strain on the elevated temperature tensile behavior of Ni-15Cr-AI-Ti-Mo alloys , 1981 .

[12]  T. Numata,et al.  Strain evaluation of strained-Si layers on SiGe by the nano-beam electron diffraction (NBD) method , 2005 .

[13]  M. Casanove,et al.  New approach for the dynamical simulation of CBED patterns in heavily strained specimens. , 2008, Ultramicroscopy.

[14]  G. Schumacher,et al.  Lattice Parameters of γ and γ' Phases in Superalloy SC16 in Unconstrained Condition , 1998 .

[15]  A. Morawiec Formal conditions for unambiguous residual strain determination by CBED , 2005 .

[16]  D. Bellet,et al.  On the contribution of internal mismatch stresses to the high-temperature broadening of gamma-ray diffraction peaks in a Ni-based single crystal , 1992 .

[17]  Uwe Glatzel,et al.  Measurement of the lattice misfit in the single crystal nickel based superalloys CMSX-4, SRR99 and SC16 by convergent beam electron diffraction , 1998 .

[18]  A. Morawiec Determinability of Complete Residual Strain Tensor from Multiple CBED Patterns , 2006 .

[19]  Frank Reginald Nunes Nabarro,et al.  Rafting in Superalloys , 1996 .

[20]  N. Sugiyama,et al.  Strain evaluation for thin strained-Si on SGOI and strained-Si on nothing (SSON) structures using nano-beam electron diffraction (NBD) , 2003, 2003 IEEE International Conference on SOI.

[21]  J. Fundenberger,et al.  Determination of lattice parameters from multiple CBED patterns: a statistical approach. , 2010, Ultramicroscopy.

[22]  A. Hazotte Transformations et contraintes de cohérence dans les superalliages et les intermétalliques de base TiAl , 2009 .

[23]  P. Bastie,et al.  Strain induced directional coarsening in nickel based superalloys : Investigation on kinetics using the small angle neutron scattering (sans) technique , 1997 .

[24]  Y. Qiu Retarded coarsening phenomenon of γ′ particles in Ni-based alloy , 1996 .

[25]  B. Shoykhet,et al.  Internal stresses and strains in coherent multilayers , 1998 .

[26]  T. Grosdidier,et al.  γ′ Precipitate splitting in Nickel-based superalloys: A 3-D finite element analysis , 1996 .

[27]  Simona Socrate,et al.  Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys , 1993 .

[28]  H. Imamura,et al.  Theoretical and experimental investigations on elastic interactions between γ′-precipitates in a Ni-Al alloy , 1981 .

[29]  J. Hartmann,et al.  Dark field electron holography for quantitative strain measurements with nanometer-scale spatial resolution , 2009 .

[30]  J. Ganghoffer,et al.  Finite element calculation of internal mismatch stresses in a single crystal nickel base superalloy , 1991 .

[31]  R. C. Ecob,et al.  The measurement of precipitate/matrix lattice mismatch in nickel-base superalloys , 1982 .

[32]  P. Anderson,et al.  Fracture in multilayers , 1992 .

[33]  H. Maier,et al.  On the unique evaluation of local lattice parameters by convergent-beam electron diffraction , 1996 .

[34]  D. Sponseller,et al.  The effects of molybdenum and aluminum on the thermal expansion coefficients of nickel-base alloys , 1975 .

[35]  Jean-Michel Hartmann,et al.  Improved precision in strain measurement using nanobeam electron diffraction , 2009 .

[36]  U. Glatzel,et al.  Measurement of the unconstrained misfit in the Nickel-Base Superalloy CMSX-4 with CBED , 1998 .

[37]  R. Pantel,et al.  Strain measurements by convergent-beam electron diffraction: The importance of stress relaxation in lamella preparations , 2004 .

[38]  T. Grosdidier,et al.  Precipitation and dissolution processes in γ/γ′ single crystal nickel-based superalloys , 1998 .

[39]  F. Hüe,et al.  Strain mapping of tensiley strained silicon transistors with embedded Si1−yCy source and drain by dark-field holography , 2009 .

[40]  P. Kelly,et al.  The determination of foil thickness by scanning transmission electron microscopy , 1975 .

[41]  R. Pantel,et al.  Quantitative evaluation of process induced strain in MOS transistors by Convergent Beam Electron Diffraction. , 2009, Micron.

[42]  D. Mukherji,et al.  On the measurement of lattice mismatch between γ and γ′ phases in nickel-base superalloys by CBED technique , 1996 .

[43]  A. Argon,et al.  INTERMEDIATE TEMPERATURE CREEP DEFORMATION IN CMSX-3 SINGLE CRYSTALS , 1988 .

[44]  B. Richards,et al.  Long — term growth of superalloy γ′ particles , 1982 .

[45]  C. Schulze,et al.  Transmisson electron microscopy of phase composition and lattice misfit in the Re-containing nickel-base superalloy CMSX-10 , 2000 .

[46]  T. Link,et al.  Temperature dependence of the thermal lattice mismatch in a single crystal nickel-base superalloy measured by neutron diffraction , 1992 .