Features in Scale Space: Progress on the 2D 2nd Order Jet

We present theoretical and computational results that develop Koenderink's theory of feature analysis in human vision [1,7]. Employing a scale space framework, the method aims to classify image points into one of a limited number of feature categories on the basis of local derivative measurements up to some order. At the heart of the method is the use of a family of functions, members of which can be used to account for any set of image measurements. We will show how certain families of simple functions naturally induce a categorical structure onto the space of possible measurements. We present two such families suitable for 1D images measured up to 2nd order, and various results relevant to similar analysis of 2D images.

[1]  Andrea J. van Doorn,et al.  Receptive field assembly pattern specificity , 1992, J. Vis. Commun. Image Represent..

[2]  Mads Nielsen Scale-Space Generators and Functionals , 1997, Gaussian Scale-Space Theory.

[3]  J. Koenderink,et al.  Illuminance critical points on generic smooth surfaces , 1993 .

[4]  Tony Lindeberg,et al.  On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.

[5]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[6]  Jan J. Koenderink,et al.  What is a "Feature"? , 1993 .

[7]  Antal Majthay Foundations of catastrophe theory , 1985 .

[8]  Erwin Schrödinger,et al.  Theorie der Pigmente von größter Leuchtkraft , 1920 .

[9]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[10]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[12]  W Richards,et al.  Quantifying sensory channels: generalizing colorimetry to orientation and texture, touch, and tones. , 1979, Sensory processes.

[13]  Max A. Viergever,et al.  Scale-Space: Its Natural Operators and Differential Invariants , 1991, IPMI.

[14]  Bart M. ter Haar Romeny Applications of Scale-Space Theory , 1997, Gaussian Scale-Space Theory.

[15]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[16]  E. Schrödinger Grundlinien einer Theorie der Farbenmetrik im Tagessehen , 1920 .