A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons

A second-generation potential energy function for solid carbon and hydrocarbon molecules that is based on an empirical bond order formalism is presented. This potential allows for covalent bond breaking and forming with associated changes in atomic hybridization within a classical potential, producing a powerful method for modelling complex chemistry in large many-atom systems. This revised potential contains improved analytic functions and an extended database relative to an earlier version (Brenner D W 1990 Phys. Rev. B 42 9458). These lead to a significantly better description of bond energies, lengths, and force constants for hydrocarbon molecules, as well as elastic properties, interstitial defect energies, and surface energies for diamond.

[1]  Pandey,et al.  New classical potential for accurate simulation of atomic processes in Si. , 1988, Physical review. B, Condensed matter.

[2]  D. Pettifor,et al.  New many-body potential for the bond order. , 1989, Physical review letters.

[3]  Modelling of boron nitride: Atomic scale simulations on thin film growth , 1998 .

[4]  Porezag,et al.  Stability, reconstruction, and electronic properties of diamond (100) and (111) surfaces. , 1993, Physical review. B, Condensed matter.

[5]  Donald W. Brenner,et al.  Multiscale modeling approach for calculating grain-boundary energies from first principles , 1998 .

[6]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[7]  Das Sarma S,et al.  Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors. , 1988, Physical review. B, Condensed matter.

[8]  Susan B. Sinnott,et al.  INTERACTIONS OF CARBON-NANOTUBULE PROXIMAL PROBE TIPS WITH DIAMOND AND GRAPHENE , 1998 .

[9]  Harrison,et al.  Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. , 1992, Physical review. B, Condensed matter.

[10]  Donald W. Brenner,et al.  On the way to fullerenes : molecular dynamics study of the Curling and closure of graphitic ribbons , 1992 .

[11]  B. Garrison,et al.  Molecular Dynamics Simulations of Particle Bombardment Induced Desorption Processes: Alkanethiolates on Au(111) , 1999 .

[12]  Donald W. Brenner,et al.  Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces , 1993 .

[13]  Kurt Scheerschmidt,et al.  EMPIRICAL BOND-ORDER POTENTIAL FOR SEMICONDUCTORS , 1998 .

[14]  Donald W. Brenner,et al.  Surface patterning by atomically-controlled chemical forces : molecular dynamics simulations , 1994 .

[15]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[16]  Phillip V. Smith,et al.  Extension of the Brenner empirical interatomic potential to CSiH systems , 1996 .

[17]  J. Glosli,et al.  The melting line of diamond determined via atomistic computer simulations , 1999 .

[18]  Donald W. Brenner,et al.  Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces , 1993 .

[19]  Donald W. Brenner,et al.  Simulated Tribochemistry: An Atomic-Scale View of the Wear of Diamond , 1994 .

[20]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[21]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[22]  A. Anderson,et al.  Adsorption of H, CH3, CH2 and C2H2 on 2 × 1 restructured diamond (100) , 1991 .

[23]  Nicholas Winograd,et al.  Molecular Dynamics Simulation Study of Molecular Ejection Mechanisms: keV Particle Bombardment of C6H6/Ag{111} , 1999 .

[24]  Alan B. Tutein,et al.  Indentation Analysis of Linear-Chain Hydrocarbon Monolayers Anchored to Diamond , 1999 .

[25]  Susan B. Sinnott,et al.  Molecular dynamics simulations of the filling and decorating of carbon nanotubules , 1999 .

[26]  J. Harrison,et al.  Molecular dynamics investigations of the effects of debris molecules on the friction and wear of diamond , 1996 .

[27]  M. Yin,et al.  Structural theory of graphite and graphitic silicon , 1984 .

[28]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[29]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[30]  Susan B. Sinnott,et al.  MOLECULAR DYNAMICS OF CARBON NANOTUBULE PROXIMAL PROBE TIP-SURFACE CONTACTS , 1999 .

[31]  J. Glosli,et al.  LIQUID-LIQUID PHASE TRANSFORMATION IN CARBON , 1999 .

[32]  Donald W. Brenner,et al.  Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics , 1995 .

[33]  M. Yin,et al.  Will diamond transform under megabar pressures , 1983 .

[34]  Donald W. Brenner,et al.  Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces , 1992 .

[35]  D. Brenner,et al.  ATOMISTIC SIMULATIONS OF STRUCTURES AND MECHANICAL PROPERTIES OF POLYCRYSTALLINE DIAMOND : SYMMETRICAL (001) TILT GRAIN BOUNDARIES , 1999 .

[36]  J. Harrison,et al.  Universal Aspects of the Atomic-Scale Friction of Diamond Surfaces , 1995 .

[37]  Donald W. Brenner,et al.  ATOMISTIC SIMULATIONS OF STRUCTURES AND MECHANICAL PROPERTIES OF (011) TILT GRAIN BOUNDARIES AND THEIR TRIPLE JUNCTIONS IN DIAMOND , 1999 .

[38]  A. Fazzio,et al.  Hydrogen role on the properties of amorphous silicon nitride , 1999 .

[39]  D. W. Brenner,et al.  Ion Pickup of Large, Surface-Adsorbed Molecules: A Demonstration of the Eley-Rideal Mechanism , 1992 .

[40]  J. Mintmire,et al.  Simulations of buckminsterfullerene (C60) collisions with a hydrogen-terminated diamond {111} surface , 1991 .

[41]  S. Sinnott,et al.  Polymerization via Cluster−Solid Surface Impacts: Molecular Dynamics Simulations , 1997 .

[42]  Pantelides,et al.  Mechanism of self-diffusion in diamond. , 1988, Physical review letters.

[43]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[44]  Liu,et al.  Structural properties of a three-dimensional all-sp2 phase of carbon. , 1991, Physical review. B, Condensed matter.

[45]  W. Harrison Theory of the two-center bond , 1983 .

[46]  R. Colton,et al.  Atomistic mechanisms of adhesion and compression of diamond surfaces , 1991 .

[47]  Donald W. Brenner,et al.  Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene , 1991 .

[48]  S. Sinnott,et al.  Effect of cluster size on the reactivity of organic molecular clusters: Atomistic simulations , 1998 .

[49]  Donald W. Brenner,et al.  TEMPERATURE-DEPENDENT FUSION OF COLLIDING C60 FULLERENES FROM MOLECULAR DYNAMICS SIMULATIONS , 1995 .

[50]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[51]  Donald W. Brenner,et al.  Tersoff-Type Potentials for Carbon, Hydrogen and Oxygen , 1988 .

[52]  S. Sinnott,et al.  Effects of unique ion chemistry on thin-film growth by plasma-surface interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Omeltchenko,et al.  Atomistic modeling of the fracture of polycrystalline diamond , 2000 .

[54]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[55]  J. Harrison,et al.  Friction between Diamond Surfaces in the Presence of Small Third-Body Molecules , 1997 .

[56]  R. Colton,et al.  Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films , 1997 .

[57]  Keith Beardmore,et al.  Empirical potentials for C-Si-H systems with application to C60 interactions with Si crystal surfaces , 1996 .

[58]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[59]  David G. Pettifor,et al.  ANALYTIC BOND-ORDER POTENTIALS BEYOND TERSOFF-BRENNER. II. APPLICATION TO THE HYDROCARBONS , 1999 .

[60]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[61]  D. Srivastava,et al.  Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry , 1999 .

[62]  Phillip V. Smith,et al.  A molecular dynamics study of the chemisorption of C2H2 and CH3 on the SI(001)-(2 × 1) surface , 1997 .

[63]  S. Sinnott,et al.  Atomistic simulations of organic thin film deposition through hyperthermal cluster impacts , 1998 .

[64]  S. Sinnott,et al.  Generation of 3D hydrocarbon thin films via organic molecular cluster collisions , 1998 .

[65]  Harry A. Atwater,et al.  Empirical interatomic potential for Si-H interactions. , 1995, Physical review. B, Condensed matter.

[66]  Kubiak,et al.  Normally unoccupied states on C(111) (diamond) (2 x 1): Support for a relaxed pi -bonded chain model. , 1989, Physical review. B, Condensed matter.

[67]  Weiner,et al.  Reconstruction of (100) diamond surfaces using molecular dynamics with combined quantum and empirical forces. , 1994, Physical Review B (Condensed Matter).

[68]  Brenner,et al.  Hydrocarbon adsorption on a diamond (100) stepped surface. , 1994, Physical review. B, Condensed matter.

[69]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[70]  D. Brenner,et al.  Molecular Dynamics Simulations of Dimer Opening on a Diamond {001}(2x1) Surface , 1992, Science.

[71]  T. Çagin,et al.  Generalized extended empirical bond-order dependent force fields including nonbond interactions , 1999 .

[72]  Donald W. Brenner,et al.  HYDROGEN ABSTRACTION FROM A DIAMOND SURFACE. AB INITIO QUANTUM CHEMICAL STUDY WITH CONSTRAINED ISOBUTANE AS A MODEL , 1991 .

[73]  Susan B. Sinnott,et al.  Effect of chemical functionalization on the mechanical properties of carbon nanotubes , 1998 .

[74]  Steven G. Louie,et al.  Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method , 1984 .

[75]  Hafner,et al.  Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. , 1996, Physical review. B, Condensed matter.