Associativity of a two place function T(x,y)=f^(^-^1^)(f(x)+f(y)) where f:[0,1]->[0,~] is a strictly monotone function andf^(^-^1^):[0,~]->[0,1] is the pseudo-inverse of f depends only on properties of the range of f. The following question is answered: what property of the range of an additive generator f is necessary and sufficient for associativity of the corresponding generated function T? We also introduce the characterization of all additive generators f of T with property T(...T(T(x"1,x"2),x"3),...,x"n)=f^(^-^1^)(f(x"1)+...+f(x"n)) for all [email protected]?N,n>=2 and for all x"1,...,x"[email protected]?[0,1]. Some constructions of non-continuous additive generators of associative functions are presented.
[1]
Josef Tkadlec.
Triangular Norms with Continous Daigonals
,
1999
.
[2]
S. E. Rodabaugh,et al.
Topological and Algebraic Structures in Fuzzy Sets
,
2003
.
[3]
Radko Mesiar,et al.
Triangular Norms
,
2000,
Trends in Logic.
[4]
N. H. Abel.
Untersuchung der Functionen zweier unabhängig veränderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f (x,y)) eine symmetrische Function von z, x und y ist.
,
1826
.
[5]
Andrea Mesiarová-Zemánková,et al.
Cancellative t-norms
,
2003,
EUSFLAT Conf..