Linearization techniques for band structure calculations in absorbing photonic crystals

Band structure calculations for photonic crystals require the numerical solution of eigenvalue problems. In this paper, we consider crystals composed of lossy materials with frequency‐dependent permittivities. Often, these frequency dependencies are modeled by rational functions, such as the Lorentz model, in which case the eigenvalue problems are rational in the eigenvalue parameter. After spatial discretization using an interior penalty discontinuous Galerkin method, we employ a recently developed linearization technique to deal with the resulting rational matrix eigenvalue problems. In particular, the efficient implementation of Krylov subspace methods for solving the linearized eigenvalue problems is investigated in detail. Numerical experiments demonstrate that our new approach is considerably cheaper in terms of memory and computing time requirements compared with the naive approach of turning the rational eigenvalue problem into a polynomial eigenvalue problem and applying standard linearization techniques. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Ralf Hiptmair,et al.  Multiple traces boundary integral formulation for Helmholtz transmission problems , 2012, Adv. Comput. Math..

[2]  Zhaojun Bai,et al.  Solving Rational Eigenvalue Problems via Linearization , 2011, SIAM J. Matrix Anal. Appl..

[3]  S. Mishra,et al.  Well-balanced high resolution finite volume schemes for the simulation of wave propagation in three-dimensional non-isothermal stratified magneto-atmospheres , 2011 .

[4]  C. Engström,et al.  Complex dispersion relation calculations with the symmetric interior penalty method , 2010 .

[5]  C. Engström ON THE SPECTRUM OF A HOLOMORPHIC OPERATOR-VALUED FUNCTION WITH APPLICATIONS TO ABSORPTIVE PHOTONIC CRYSTALS , 2010 .

[6]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[7]  Heinrich Voss,et al.  A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter , 2009, Numer. Linear Algebra Appl..

[8]  K. Schmidt,et al.  Computation of the band structure of two-dimensional photonic crystals with hp finite elements , 2009 .

[9]  Q. Liu,et al.  Spectral element method for band structures of two-dimensional anisotropic photonic crystals. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[11]  Kumar Vemaganti Discontinuous Galerkin methods for periodic boundary value problems , 2007 .

[12]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[13]  Ilaria Perugia,et al.  Discontinuous Galerkin Approximation of the Maxwell Eigenproblem , 2006, SIAM J. Numer. Anal..

[14]  A. Buffa,et al.  Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .

[15]  J. Volk,et al.  Band gaps in photonic crystals with dispersion , 2005 .

[16]  Alastair Spence,et al.  Photonic band structure calculations using nonlinear eigenvalue techniques , 2005 .

[17]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[18]  J. Joannopoulos,et al.  Nature of lossy Bloch states in polaritonic photonic crystals , 2004 .

[19]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[20]  H. Voss A Maxmin Principle for Nonlinear Eigenvalue Problems with Application to a Rational Spectral Problem in Fluid-Solid Vibration , 2003 .

[21]  Christian Hafner,et al.  Band structure computations of metallic photonic crystals with the multiple multipole method , 2002 .

[22]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[23]  Kazuaki Sakoda,et al.  Photonic bands of metallic systems. I. Principle of calculation and accuracy , 2001 .

[24]  P. Kuchment,et al.  An Efficient Finite Element Method for Computing Spectra of Photonic and Acoustic Band-Gap Materials , 1999 .

[25]  D. Dobson An Efficient Method for Band Structure Calculations in 2D Photonic Crystals , 1999 .

[26]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[27]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[28]  Alexander Figotin,et al.  The Computation of Spectra of Some 2D Photonic Crystals , 1997 .

[29]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..

[30]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[31]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[32]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[33]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[34]  G. Golub Matrix computations , 1983 .

[35]  K. Hadeler,et al.  A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems , 1982 .

[36]  William G. Faris Review: Michael Reed and Barry Simon, Methods of modern mathematical physics, vol. III, Scattering theory, and Michael Reed and Barry Simon, Methods of modern mathematical physics, vol. IV, Analysis of operators , 1980 .

[37]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[38]  Joseph B. Keller,et al.  Partial Differential Equations with Periodic Coefficients and Bloch Waves in Crystals , 1964 .