Fractional Order Control of Fractional Diffusion Systems Subject to Input Hysteresis
暂无分享,去创建一个
[1] A. Kilbas,et al. A Cauchy-type problem for the diffusion-wave equation with Riemann-Liouville partial derivative , 2005 .
[2] R. Bagley,et al. On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .
[3] Serdar Ethem Hamamci,et al. Fractional order PIλ control strategy for a Liquid Level System , 2010, 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC).
[4] I. Podlubny. Fractional differential equations , 1998 .
[6] Necati Özdemir,et al. Fractional diffusion-wave problem in cylindrical coordinates , 2008 .
[7] I. Schäfer,et al. Modelling of coils using fractional derivatives , 2006 .
[8] O. Agrawal. A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .
[9] O. Agrawal. Fractional Optimal Control of a Distributed System Using Eigenfunctions , 2007 .
[10] B. D. Coleman,et al. A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .
[11] Alexandra M. Galhano,et al. Performance of Fractional PID Algorithms Controlling Nonlinear Systems with Saturation and Backlash Phenomena , 2007 .
[12] F. Mainardi. The fundamental solutions for the fractional diffusion-wave equation , 1996 .
[13] A. Visintin. Differential models of hysteresis , 1994 .
[14] M. Krasnosel’skiǐ,et al. Systems with Hysteresis , 1989 .
[15] R. Hilfer. Fractional Diffusion Based on Riemann-Liouville Fractional Derivatives † , 2000 .
[16] O. Agrawal,et al. AXIS-SYMMETRIC FRACTIONAL DIFFUSION-WAVE PROBLEM: PART I-ANALYSIS , 2008 .
[17] J. Padovan,et al. Diophantine type fractional derivative representation of structural hysteresis , 1997 .
[18] Necati Özdemir,et al. Fractional optimal control of a 2-dimensional distributed system using eigenfunctions , 2008 .
[19] W. Wyss. The fractional diffusion equation , 1986 .
[20] I. Podlubny,et al. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.
[21] Bernard D. Coleman,et al. On a class of constitutive relations for ferromagnetic hysteresis , 1987 .
[22] José António Tenreiro Machado,et al. Application of Fractional Calculus in the Control of Heat Systems , 2007, J. Adv. Comput. Intell. Intell. Informatics.
[23] Paolo Nistri,et al. Mathematical Models for Hysteresis , 1993, SIAM Rev..
[24] O. Agrawal. Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .
[25] Mohamed Abdalla Darwish,et al. Existence of fractional integral equation with hysteresis , 2006, Appl. Math. Comput..
[26] J. Padovan,et al. Diophantine type fractional derivative representation of structural hysteresis , 1997 .
[27] Yuriy Povstenko,et al. Time-fractional radial diffusion in a sphere , 2008 .
[28] Weihua Deng,et al. Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system , 2007 .
[29] Mayergoyz,et al. Mathematical models of hysteresis. , 1986, Physical review letters.
[30] Necati Özdemir,et al. Fractional optimal control problem of a distributed system in cylindrical coordinates , 2009 .
[31] P. Lino,et al. New tuning rules for fractional PIα controllers , 2007 .
[32] C. Knospe,et al. PID control , 2006, IEEE Control Systems.
[33] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .