Dynamic computational geometry on meshes and hypercubes

Parallel algorithms are given for determining geometric properties of systems of moving point-objects. The objects are assumed to be moving in a Euclidean space such that each coordinate of a point's motion is a polynomial of bounded degree in the time variable. The properties investigated include nearest (farthest) neighbor, closest (farthest) pair, collision, convex hull, diameter, and containment. Several of these properties are investigated from both the dynamic and steady-state points of view. Efficient, and often optimal, implementations of these algorithms are given for the mesh and hypercube.

[1]  Micha Sharir,et al.  Almost linear upper bounds on the length of general davenport—schinzel sequences , 1987, Comb..

[2]  Mikhail J. Atallah,et al.  Solving tree problems on a mesh-connected processor array , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[3]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[4]  D. M. Watson,et al.  The Cellular Logic Array Image Processor , 1977, Comput. J..

[5]  Russ Miller,et al.  Geometric Algorithms for Digitized Pictures on a Mesh-Connected Computer , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Russ Miller,et al.  Efficient Parallel Convex Hull Algorithms , 1988, IEEE Trans. Computers.

[7]  M. Atallah Some dynamic computational geometry problems , 1985 .

[8]  A. Nijenhuis Combinatorial algorithms , 1975 .

[9]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[10]  John L. Gustafson,et al.  The Architecture of a Homogeneous Vector Supercomputer , 1986, J. Parallel Distributed Comput..

[11]  Sartaj Sahni,et al.  Finding Connected Components and Connected Ones on a Mesh-Connected Parallel Computer , 1980, SIAM J. Comput..

[12]  H. T. Kung,et al.  Sorting on a mesh-connected parallel computer , 1977, CACM.

[13]  Mikhail J. Atallah,et al.  Graph Problems on a Mesh-Connected Processor Array , 1984, JACM.

[14]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[15]  Richard M. Brown,et al.  The ILLIAC IV Computer , 1968, IEEE Transactions on Computers.

[16]  Frank Dehne,et al.  O(n^(1/2)) Algorithms for the Maximal Elements and ECDF Searching Problem on a Mesh-Connected Parallel Computer , 1986, Inf. Process. Lett..

[17]  Franco P. Preparata,et al.  Optimal Three-Layer Channel Routing , 1984, IEEE Transactions on Computers.

[18]  R. Miller,et al.  Computational geometry on hypercube computers , 1989, C3P.

[19]  H. Davenport,et al.  A Combinatorial Problem Connected with Differential Equations , 1965 .

[20]  Michael Ian Shamos,et al.  Geometric complexity , 1975, STOC.

[21]  Russ Miller,et al.  Mesh Computer Algorithms for Computational Geometry , 1989, IEEE Trans. Computers.

[22]  Kenneth E. Batcher The massively parallel processor system overview , 1985 .

[23]  J. Gregory,et al.  The SOLOMON Computer , 1963, IEEE Trans. Electron. Comput..

[24]  Leslie G. Valiant,et al.  A logarithmic time sort for linear size networks , 1982, STOC.

[25]  J. Koenderink,et al.  New type of raster scan preserves the topology of the image , 1979, Proceedings of the IEEE.

[26]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[27]  John P. Hayes,et al.  Architecture of a Hypercube Supercomputer , 1986, ICPP.

[28]  Quentin F. Stout Topological matching , 1983, STOC '83.

[29]  Jorge L. C. Sanz,et al.  An EREW PRAM Algorithm for Image Component Labeling , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Jerry L. Potter The Massively Parallel Processor , 1985 .

[31]  Russ Miller,et al.  Varying Diameter and Problem Size in Mesh-Connected Computers , 1985, ICPP.

[32]  Lars Lundberg,et al.  Performance Optimization Using Extended Critical Path Analysis in Multithreaded Programs on Multiprocessors , 2001, J. Parallel Distributed Comput..

[33]  E. Szemerédi On a problem of Davenport and Schinzel , 1974 .

[34]  Jorge L. C. Sanz,et al.  Hypercube and Shuffle-Exchange Algorithms for Image Component Labeling , 1987, J. Algorithms.

[35]  Abraham Lempel,et al.  Compression of two-dimensional data , 1986, IEEE Trans. Inf. Theory.