Reduced basis homogenization of viscoelastic composites

Abstract A reduced basis order-reduction based homogenization method for the constitutive behavior of viscoelastic composites is presented. The approach is based on a modification of the Nonuniform Transformation Field Analysis (NTFA) introduced by Michel and Suquet [1] . A new evolution law for the set of macroscopic internal variables of the homogenized material is derived based on dissipative considerations. The theoretical aspects of the method are extensively discussed including an explicit algorithm for the computation of the anisotropic complex moduli of the material. Details concerning the numerical implementation and a selection of representative numerical examples are provided. The method accurately captures the anisotropic transient mechanical response of composites for various loading conditions while offering numerical savings in the order of 10 6 –10 10 with respect to both, CPU time and memory requirements.

[1]  Felix Fritzen,et al.  Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro-Heterogeneous Materials , 2012 .

[2]  Julien Yvonnet,et al.  A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials , 2011 .

[3]  Pierre Suquet,et al.  Nonuniform transformation field analysis of elastic–viscoplastic composites , 2009 .

[4]  T. Böhlke,et al.  Nonlinear homogenization using the nonuniform transformation field analysis , 2011 .

[5]  Zvi Hashin,et al.  Viscoelastic Behavior of Heterogeneous Media , 1965 .

[6]  S. Torquato Random Heterogeneous Materials , 2002 .

[7]  Michel Loève,et al.  Probability Theory I , 1977 .

[8]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[9]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[10]  Frédéric Feyel,et al.  Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .

[11]  Pierre Suquet,et al.  Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .

[12]  Alexander Lion,et al.  Amplitude dependence of filler-reinforced rubber: Experiments, constitutive modelling and FEM – Implementation , 2010 .

[13]  Zvi Hashin,et al.  Complex moduli of viscoelastic composites—I. General theory and application to particulate composites , 1970 .

[14]  Pierre Suquet,et al.  Effective behavior of linear viscoelastic composites: A time-integration approach , 2007 .

[15]  G. J. Dvorak,et al.  Implementation of the transformation field analysis for inelastic composite materials , 1994 .

[16]  P. Ponte Castañeda,et al.  New variational principles in plasticity and their application to composite materials , 1992 .

[17]  Y. Benveniste,et al.  On transformation strains and uniform fields in multiphase elastic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  Pedro Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory , 2002 .

[19]  Thomas Böhlke,et al.  Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites , 2011 .

[20]  Gerhard A. Holzapfel,et al.  A new viscoelastic constitutive model for continuous media at finite thermomechanical changes , 1996 .

[21]  L. C. Brinson,et al.  Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites , 1998 .

[22]  David Ryckelynck,et al.  Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables , 2010 .

[23]  N. Laws,et al.  Self-consistent estimates for the viscoelastic creep compliances of composite materials , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .