Citation for Published Item: Use Policy Minimal Unsatisfiable Formulas with Bounded Clause-variable Difference Are Fixed-parameter Tractable

Recognition of minimal unsatisfiable CNF formulas (unsatisfiable CNF formulas which become satisfiable if any clause is removed) is a classical Dp-complete problem. It was shown recently that minimal unsatisfiable formulas with n variables and n + k clauses can be recognized in time nO(k). We improve this result and present an algorithm with time complexity O(2kn4); hence the problem turns out to be fixed-parameter tractable (FTP) in the sense of Downey and Fellows (Parameterized Complexity, 1999).Our algorithm gives rise to a fixed-parameter tractable parameterization of the satisfiability problem: If for a given set of clauses F, the number of clauses in each of its subsets exceeds the number of variables occurring in the subset at most by k, then we can decide in time O(2kn3) whether F is satisfiable; k is called the maximum deficiency of F and can be efficiently computed by means of graph matching algorithms. Known parameters for fixed-parameter tractable satisfiability decision are tree-width or related to tree-width. Tree-width and maximum deficiency are incomparable in the sense that we can find formulas with constant maximum deficiency and arbitrarily high tree-width, and formulas where the converse prevails.

[1]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[2]  Georg Gottlob,et al.  Fixed-Parameter Complexity in AI and Nonmonotonic Reasoning , 1999, LPNMR.

[3]  Stefan Porschen,et al.  Improving a fixed parameter tractability time bound for the shadow problem , 2003, J. Comput. Syst. Sci..

[4]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[5]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[6]  Sharad Malik,et al.  The Quest for Efficient Boolean Satisfiability Solvers , 2002, CAV.

[7]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[8]  Oliver Kullmann,et al.  Lean clause-sets: generalizations of minimally unsatisfiable clause-sets , 2003, Discret. Appl. Math..

[9]  Michael R. Fellows,et al.  Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.

[10]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[11]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[12]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[13]  Ewald Speckenmeyer,et al.  An Algorithm for the Class of Pure Implicational Formulas , 1999, Discret. Appl. Math..

[14]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[15]  Alasdair Urquhart,et al.  The Complexity of Propositional Proofs , 1995, Bulletin of Symbolic Logic.

[16]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[17]  Christos H. Papadimitriou,et al.  The complexity of facets resolved , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[18]  Hans Kleine Büning,et al.  An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF , 1998, Annals of Mathematics and Artificial Intelligence.

[19]  Georg Gottlob,et al.  The complexity of acyclic conjunctive queries , 2001, JACM.

[20]  Hans Kleine Büning,et al.  An Upper Bound for Minimal Resolution Refutations , 1998, CSL.

[21]  Nathan Linial,et al.  Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas , 1986, J. Comb. Theory, Ser. A.

[22]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[23]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[24]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Oliver Kullmann,et al.  An application of matroid theory to the SAT problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[26]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[27]  Hans Kleine Büning,et al.  On subclasses of minimal unsatisfiable formulas , 2000, Discret. Appl. Math..

[28]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[29]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[30]  Stefan Szeider,et al.  Minimal Unsatisfiable Formulas with Bounded Clause-Variable Difference are Fixed-Parameter Tractable , 2003, COCOON.

[31]  Stefan Szeider,et al.  Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference , 2002, Theor. Comput. Sci..

[32]  Stefan Szeider,et al.  On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.

[33]  Stefan Szeider Generalizations of matched CNF formulas , 2005 .

[34]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[35]  Allen Van Gelder,et al.  A perspective on certain polynomial-time solvable classes of satisfiability , 2003, Discret. Appl. Math..