Full operator preconditioning and the accuracy of solving linear systems

Unless special conditions apply, the attempt to solve ill-conditioned systems of linear equations with standard numerical methods leads to uncontrollably high numerical error. Often, such systems arise from the discretization of operator equations with a large number of discrete variables. In this paper we show that the accuracy can be improved significantly if the equation is transformed before discretization, a process we call full operator preconditioning (FOP). It bears many similarities with traditional preconditioning for iterative methods but, crucially, transformations are applied at the operator level. We show that while condition-number improvements from traditional preconditioning generally do not improve the accuracy of the solution, FOP can. A number of topics in numerical analysis can be interpreted as implicitly employing FOP; we highlight (i) Chebyshev interpolation in polynomial approximation, and (ii) Olver-Townsend’s spectral method, both of which produce solutions of dramatically improved accuracy over a naive problem formulation. In addition, we propose a FOP preconditioner based on integration for the solution of fourth-order differential equations with the finite-element method, showing the resulting linear system is well-conditioned regardless of the discretization size, and demonstrate its error-reduction capabilities on several examples. This work shows that FOP can improve accuracy beyond the standard limit for both direct and iterative methods.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[3]  T. Hagstrom,et al.  Integration preconditioners for differential operators in spectral r-methods , 2011 .

[4]  Nicholas J. Higham,et al.  A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic , 2020, ArXiv.

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[9]  Jörg Liesen,et al.  Convergence analysis of Krylov subspace methods , 2004 .

[10]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[11]  Elsayed M. E. Elbarbary,et al.  Integration Preconditioning Matrix for Ultraspherical Pseudospectral Operators , 2006, SIAM J. Sci. Comput..

[12]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[13]  Snorre H. Christiansen Résolution des équations intégrales pour la diffraction d'ondes acoustiques et électromagnétiques - Stabilisation d'algorithmes itératifs et aspects de l'analyse numérique , 2002 .

[14]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[15]  K. Abdella Numerical Solution of two-point boundary value problems using Sinc interpolation , 2012 .

[16]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[17]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[18]  P. Grandclément Introduction to spectral methods , 2006, gr-qc/0609020.

[19]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[20]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[21]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[22]  Thomas Hagstrom,et al.  An efficient spectral method for ordinary differential equations with rational function coefficients , 1996, Math. Comput..

[23]  L. Trefethen Householder triangularization of a quasimatrix , 2010 .

[24]  Tingzhu Huang,et al.  New Block Triangular Preconditioners for Saddle Point Linear Systems with Highly Singular (1,1) Blocks , 2009 .

[25]  C. W. Clenshaw The numerical solution of linear differential equations in Chebyshev series , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Sheehan Olver,et al.  A Fast and Well-Conditioned Spectral Method , 2012, SIAM Rev..

[27]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[28]  L. R. Scott,et al.  On the conditioning of finite element equations with highly refined meshes , 1989 .

[29]  Leslie Greengard,et al.  Spectral integration and two-point boundary value problems , 1991 .

[30]  The continuity and boundedness of functions from Sobolev spaces , 1976 .

[31]  Wolfgang Hackbusch,et al.  Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .

[32]  Owe Axelsson,et al.  Equivalent operator preconditioning for elliptic problems , 2009, Numerical Algorithms.

[33]  Bernhard Beckermann,et al.  The condition number of real Vandermonde, Krylov and positive definite Hankel matrices , 2000, Numerische Mathematik.

[34]  Walter Gautschi,et al.  Norm estimates for inverses of Vandermonde matrices , 1974 .

[35]  Zdenek Strakos,et al.  Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.

[36]  Thomas Zeugmann,et al.  Mathematical Analysis and the Mathematics of Computation , 2016, Springer International Publishing.

[37]  Heiko Gimperlein,et al.  Optimal operator preconditioning for pseudodifferential boundary problems , 2019, Numerische Mathematik.

[38]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..