The electrochemistry of lithium in ionic liquid/organic diluent mixtures

[1]  A. Hollenkamp,et al.  Cycling and rate performance of Li–LiFePO4 cells in mixed FSI–TFSI room temperature ionic liquids , 2010 .

[2]  D. Macfarlane,et al.  On the role of cyclic unsaturated additives on the behaviour of lithium metal electrodes in ionic liquid electrolytes , 2010 .

[3]  Ashok K. Vijh,et al.  Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance , 2010 .

[4]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[5]  A. Lewandowski,et al.  Properties of the lithium and graphite-lithium anodes in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide , 2009 .

[6]  R. Compton,et al.  Kinetic and thermodynamic parameters of the Li/Li+ couple in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide in the temperature range 298-318 K: a theoretical and experimental study using Pt and Ni electrodes. , 2009, The journal of physical chemistry. B.

[7]  Maria Forsyth,et al.  Transport properties of ionic liquid electrolytes with organic diluents. , 2009, Physical chemistry chemical physics : PCCP.

[8]  Huakun Liu,et al.  Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries , 2008 .

[9]  D. Wexler,et al.  High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V2O5 Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte , 2008 .

[10]  M. Taggougui,et al.  Solvents in salt electrolyte : Benefits and possible use as electrolyte for lithium-ion battery , 2008 .

[11]  Elton J. Cairns,et al.  Characterization of N-Methyl-N-Butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl Ether Mixtures as a Li Metal Cell Electrolyte , 2008 .

[12]  Hajime Matsumoto,et al.  Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells , 2007 .

[13]  Bruno Scrosati,et al.  LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries , 2007 .

[14]  D. Macfarlane,et al.  Ionic liquid-based rechargeable lithium metal-polymer cells assembled with Polyaniline/Carbon nanotube composite cathode , 2007 .

[15]  Yo Kobayashi,et al.  Imidazolium-Based Room-Temperature Ionic Liquid for Lithium Secondary Batteries Effects of Lithium Salt Concentration , 2007 .

[16]  Anthony F. Hollenkamp,et al.  Evaluation of a Ag|Ag+ reference electrode for use in room temperature ionic liquids , 2006 .

[17]  Akira Usami,et al.  Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. , 2006, The journal of physical chemistry. B.

[18]  Stefano Passerini,et al.  NMR investigation of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSI- anions. , 2005, The journal of physical chemistry. B.

[19]  B. Carré,et al.  Imidazolium-organic solvent mixtures as electrolytes for lithium batteries , 2005 .

[20]  Shoji Yamaguchi,et al.  Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode , 2004 .

[21]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[22]  Anthony F. Hollenkamp,et al.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid , 2004 .

[23]  J. Yamaki,et al.  The Effect of Additives in Room Temperature Molten Salt-based Lithium Battery Electrolytes , 2003 .

[24]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[25]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[26]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[27]  P. Ross,et al.  Evidence for Epoxide Formation from the Electrochemical Reduction of Ethylene Carbonate , 2001 .

[28]  J. Rodríguez,et al.  A comparative study on the adsorption of benzyl alcohol, toluene and benzene on platinum , 2000 .

[29]  D. Macfarlane,et al.  Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases , 1999 .

[30]  Joan Fuller,et al.  The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate : Electrochemical couples and physical properties , 1997 .

[31]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[32]  Doron Aurbach,et al.  The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency , 1992 .

[33]  S. Campbell,et al.  The electrochemical behaviour of tetrahydrofuran and propylene carbonate without added electrolyte , 1990 .

[34]  D. Aurbach,et al.  Identification of Surface Films Formed on Lithium in Dimethoxyethane and Tetrahydrofuran Solutions , 1988 .

[35]  D. Schiffrin Theory of cyclic voltammetry for reversible electrodeposition of insoluble products , 1986 .

[36]  J. Prausnitz,et al.  Donor number estimation for oxygen- and nitrogen-containing solvents via proton NMR shift of chloroform , 1985 .

[37]  V. Koch Reactions of Tetrahydrofuran and Lithium Hexafluoroarsenate with Lithium , 1979 .

[38]  V. Koch,et al.  The Stability of the Secondary Lithium Electrode in Tetrahydrofuran‐Based Electrolytes , 1978 .