Uranium transport in acidic brines under reducing conditions

[1]  R. Roback,et al.  A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 °C , 2018 .

[2]  T. Berlepsch,et al.  Salt as a host rock for the geological repository for nuclear waste , 2016 .

[3]  Peter N. Swift,et al.  Geological Disposal of Nuclear Waste in Tuff: Yucca Mountain (USA) , 2016 .

[4]  B. Grambow Geological Disposal of Radioactive Waste in Clay , 2016 .

[5]  A. Hedin,et al.  Crystalline Rock as a Repository for Swedish Spent Nuclear Fuel , 2016 .

[6]  L. Corriveau,et al.  Element mobility patterns in magnetite-group IOCG systems: The Fab IOCG system, Northwest Territories, Canada , 2016 .

[7]  L. Corriveau,et al.  Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada , 2015, Mineralium Deposita.

[8]  A. Williams-Jones,et al.  The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids , 2014 .

[9]  J. Dubessy,et al.  Experimental study of uranyl(VI) chloride complex formation in acidic LiCl aqueous solutions under hydrothermal conditions (T = 21 C?350 °C, Psat) using Raman spectroscopy , 2013 .

[10]  J. Mercadier,et al.  Magmatic and Metamorphic Uraninite Mineralization in the Western Margin of the Trans-Hudson Orogen (Saskatchewan, Canada): A Uranium Source for Unconformity-Related Uranium Deposits? , 2013 .

[11]  M. Cathelineau,et al.  Synchrotron XRF and XANES investigation of uranium speciation and element distribution in fluid inclusions from unconformity-related uranium deposits , 2013 .

[12]  Christophe Poinssot,et al.  Interactions between Nuclear Fuel and Water at the Fukushima Daiichi Reactors , 2012 .

[13]  Peter C Burns,et al.  Nuclear Fuel in a Reactor Accident , 2012, Science.

[14]  M. Cathelineau,et al.  Giant uranium deposits formed from exceptionally uranium-rich acidic brines , 2012 .

[15]  T. McDougall,et al.  The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale , 2008 .

[16]  D. Thomas,et al.  Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta , 2007 .

[17]  M. Barton,et al.  Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .

[18]  R. Guillaumont,et al.  Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium , 2003 .

[19]  K. Blake,et al.  The Lightning Creek Sill Complex, Cloncurry District, Northwest Queensland: A Source of Fluids for Fe Oxide Cu-Au Mineralization and Sodic-Calcic Alteration , 2000 .

[20]  Y. Shvarov Algorithmization of the numeric equilibrium modeling of dynamic geochemical processes , 1999 .

[21]  R. Ewing,et al.  The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions , 1998 .

[22]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[23]  Eric W. Lemmon,et al.  A Formulation for the Static Permittivity of Water and Steam at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye–Hückel Coefficients , 1997 .

[24]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[25]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[26]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[27]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[28]  E. Oelkers,et al.  Calculation of activity coefficients and degrees of formation of neutral ion pairs in supercritical electrolyte solutions , 1991 .

[29]  J. Ryan,et al.  Uranium(IV) Hydrolysis Constants and Solubility Product of UO2·xH2O(am). , 1990 .

[30]  Andrew R. Felmy,et al.  Uranium(IV) hydrolysis constants and solubility product of UO2.cntdot.xH2O(am) , 1990 .

[31]  G. A. Parks,et al.  Hydrothermal solubility of uraninite , 1988 .

[32]  B. Vivo Uranium geochemistry, mineralogy, geology, exploration and resources , 1984 .

[33]  Joseph Kestin,et al.  Thermophysical properties of fluid D2O , 1984 .

[34]  L. Pankratz,et al.  Thermodynamic properties of elements and oxides , 1982 .

[35]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[36]  W. L. Marshall,et al.  Ion Product of Water Substance, 0-1000 C, 1-10,000 Bars. New International Formulation and Its Background, , 1981 .

[37]  P. Tremaine,et al.  Uranium and plutonium equilibriums in aqueous solutions to 200.degree.C , 1980 .

[38]  T. Sibbald,et al.  On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada , 1978 .

[39]  D. Langmuir,et al.  Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits , 1978 .

[40]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[41]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .