Robustness of Measurement, Discrimination Games, and Accessible Information.

We introduce a resource theory of measurement informativeness. This allows us to define an associated quantifier, which we call the robustness of measurement. It describes how much "noise" must be added to a measurement before it becomes completely uninformative. We show that this geometric quantifier has operational significance in terms of the advantage the measurement provides over guessing at random in a suitably chosen state discrimination game and that it is the single-shot generalization of the accessible information of a certain quantum-to-classical channel. Using this insight, we further show that the recently introduced robustness of asymmetry or coherence is the single-shot generalization of the accessible information of an ensemble. Finally, we discuss more generally the connection between robustness-based measures, discrimination problems, and information-theoretic quantities.

[1]  Gerardo Adesso,et al.  Operational Advantage of Quantum Resources in Subchannel Discrimination. , 2018, Physical review letters.

[2]  A. S. Holevo,et al.  Information capacity of a quantum observable , 2011, Probl. Inf. Transm..

[3]  Francesco Buscemi,et al.  Degradable channels, less noisy channels, and quantum statistical morphisms: An equivalence relation , 2015, Problems of Information Transmission.

[4]  E. Bagan,et al.  Optimal signal states for quantum detectors , 2011, 1103.2365.

[5]  H. Groenewold A problem of information gain by quantal measurements , 1971 .

[6]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[7]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[8]  S. Massar,et al.  Amount of information obtained by a quantum measurement , 1999, quant-ph/9907066.

[9]  A. Winter,et al.  Compression of quantum-measurement operations , 2000, quant-ph/0012128.

[10]  Masahito Hayashi,et al.  Global information balance in quantum measurements. , 2008, Physical review letters.

[11]  R. Spekkens,et al.  The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.

[12]  A. Grudka,et al.  Axiomatic approach to contextuality and nonlocality , 2015, 1506.00509.

[13]  Marcelo Terra Cunha,et al.  Operational framework for quantum measurement simulability , 2017, 1705.06343.

[14]  G. Tóth,et al.  Noise robustness of the nonlocality of entangled quantum states. , 2007, Physical review letters.

[15]  A. Acín,et al.  Simulating Positive-Operator-Valued Measures with Projective Measurements. , 2016, Physical review letters.

[16]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[17]  G. D’Ariano,et al.  Informational power of quantum measurements , 2011, 1103.1972.

[18]  J. I. D. Vicente On nonlocality as a resource theory and nonlocality measures , 2014, 1401.6941.

[19]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[20]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  D. Janzing,et al.  Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law , 2000, quant-ph/0002048.

[22]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[23]  Michele Dall'Arno,et al.  Tight bounds on accessible information and informational power , 2014 .

[24]  Masahito Hayashi,et al.  Discrimination power of a quantum detector , 2017, Physical review letters.

[25]  Nilanjana Datta,et al.  Max- Relative Entropy of Entanglement, alias Log Robustness , 2008, 0807.2536.

[26]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[27]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[28]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[29]  Gerardo Adesso,et al.  Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. , 2016, Physical review letters.

[30]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[31]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[32]  Alexander Semenovich Holevo Information capacities of quantum measurement channels , 2013 .

[33]  L. Aolita,et al.  Noncontextual Wirings. , 2017, Physical review letters.

[34]  Rui Soares Barbosa,et al.  Contextual Fraction as a Measure of Contextuality. , 2017, Physical review letters.

[35]  Mark M. Wilde,et al.  The information-theoretic costs of simulating quantum measurements , 2012, ArXiv.

[36]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[37]  M. Piani,et al.  Robustness of asymmetry and coherence of quantum states , 2016, 1601.03782.

[38]  Yonina C. Eldar,et al.  Optimal Encoding of Classical Information in a Quantum Medium , 2007, IEEE Transactions on Information Theory.

[39]  R. Duan,et al.  Quantum majorization and a complete set of entropic conditions for quantum thermodynamics , 2017, Nature Communications.

[40]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[41]  Renato Renner,et al.  Smooth Max-Information as One-Shot Generalization for Mutual Information , 2013, IEEE Transactions on Information Theory.

[42]  A. Winter ‘‘Extrinsic’’ and ‘‘Intrinsic’’ Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures , 2001, quant-ph/0109050.