Electrocaloric vs. magnetocaloric energy conversion

Abstract Currently, one of the most interesting alternatives to conventional compressor refrigeration is magnetic refrigeration. However, despite its great potential, some important obstacles, relating mostly to the relatively low power density and the related high costs, must be overcome. Another alternative, which also shows great potential, is electrocaloric refrigeration. Until recently, electrocaloric materials were not so common; however, a number of different electrocaloric materials exist today. Like magnetocalorics, these can be used in the form of a regenerator in order to increase the temperature span. Based on a previously developed numerical model, we have made a comparison between electrocaloric and magnetocaloric regenerators. The results suggest that electrocaloric energy conversion represents a serious alternative, not only to compressor-based technologies, but also to magnetocalorics.

[1]  K. K. Nielsen,et al.  Modeling of in-vehicle magnetic refrigeration , 2012 .

[2]  Savvas A. Tassou,et al.  A review of emerging technologies for food refrigeration applications , 2010 .

[3]  Qi Zhang,et al.  Solar micro-energy harvesting with pyroelectric effect and wind flow , 2011 .

[4]  Marko Ožbolt,et al.  Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives , 2014 .

[5]  Andrej Kitanovski,et al.  A comprehensive experimental analysis of gadolinium active magnetic regenerators , 2013 .

[6]  Gregory Nellis,et al.  The Effect of Internal Temperature Gradients on Regenerator Matrix Performance , 2006 .

[7]  G. Zheng,et al.  Electro-caloric behaviors of lead-free Bi0.5Na0.5TiO3-BaTiO3 ceramics , 2012, Journal of Electroceramics.

[8]  M. Hilt A solid-state heat pump using electrocaloric ceramic elements , 2009 .

[9]  S. Shi,et al.  The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO₃ thick film , 2011 .

[10]  Qi Zhang,et al.  Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTiO3 relaxor thin film , 2009 .

[11]  Andrej Kitanovski,et al.  A numerical comparison of a parallel-plate AMR and a magnetocaloric device with embodied micro thermoelectric thermal diodes , 2014 .

[12]  K. Engelbrecht,et al.  Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance , 2010 .

[13]  Qiming Zhang,et al.  Electrocaloric Effect (ECE) in Ferroelectric Polymer Films , 2010 .

[14]  A. V. Es’kov,et al.  Simulation of a solid-state cooler with electrocaloric elements , 2009 .

[15]  Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction , 2010, 1003.5032.

[16]  N. Mathur,et al.  Direct and indirect electrocaloric measurements using multilayer capacitors , 2009, 0912.1978.

[17]  E. Mikhaleva,et al.  Electrocaloric effect and anomalous conductivity of the ferroelectric NH4HSO4 , 2008 .

[18]  Yu. V. Sinyavskii Electrocaloric refrigerators: A promising alternative to current low-temperature apparatus , 1995 .

[19]  Kaspar Kirstein Nielsen,et al.  The influence of the solid thermal conductivity on active magnetic regenerators , 2012 .

[20]  Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 PbMg(1/3)Nb(2/3)O(3)-0.1 PbTiO(3) near room temperature , 2006, cond-mat/0604268.

[21]  R. Bjork,et al.  Magnetocaloric properties of LaFe13−x−yCoxSiy and commercial grade Gd , 2010, 1410.1988.

[22]  Junhao Chu,et al.  Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films , 2010 .

[23]  Ayan Roy Chaudhuri,et al.  Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary , 2009 .

[24]  Frank G. Shi,et al.  Thickness dependent dielectric strength of a low-permittivity dielectric film , 2001 .

[25]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[26]  D. Payne,et al.  The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics , 1981 .

[27]  Laurent Pilon,et al.  Towards optimization of a pyroelectric energy converter for harvesting waste heat , 2010 .

[28]  Qing Xu,et al.  Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3 ceramics made by a citrate method , 2008 .

[29]  N. Mathur,et al.  PST thin films for electrocaloric coolers , 2011 .

[30]  O. V. Pakhomov,et al.  Layered ceramic structure based on the electrocaloric elements working as a solid state cooling line , 2007 .

[31]  N. D. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[32]  飯田 修一 A.H.Morrish : The Physical Principle of Magnetism, John Wiley & Sons, Inc. New York, London, Sydney, 1965, 680頁, 15.5×23.5cm, 6,600円 , 1966 .

[33]  Qiming Zhang,et al.  Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers , 2010 .

[34]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[35]  A. Soh,et al.  Modeling of enhanced electrocaloric effect above the Curie temperature in relaxor ferroelectrics , 2011 .

[36]  James A. Dirks,et al.  The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications , 2012 .

[37]  A. T. Prata,et al.  A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator , 2012 .

[38]  Y. Ju,et al.  Solid-State Refrigeration Based on the Electrocaloric Effect for Electronics Cooling , 2010 .

[39]  Kevin J. Malloy,et al.  Electrocaloric devices based on thin-film heat switches , 2009 .

[40]  B. Liu,et al.  Enhancing the electrocaloric effect of PbZr0.4Ti0.6O3/PbTiO3 superlattices via composition tuning , 2011 .

[41]  Xihong Hao,et al.  Effects of oxide buffer layers on the microstructure and electrical properties of PLZST 2/87/10/3 antiferroelectric thin films , 2011 .

[42]  Yanbing Jia,et al.  A solid-state refrigerator based on the electrocaloric effect , 2012 .

[43]  A. Poredos,et al.  Dynamic operation of an active magnetic regenerator (AMR): Numerical optimization of a packed-bed AMR , 2011 .

[44]  M. Kosec,et al.  Influence of the critical point on the electrocaloric response of relaxor ferroelectrics , 2011 .

[45]  Saber Mohammadi,et al.  Solid-state cooling line based on the electrocaloric effect , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[46]  M. Kosec,et al.  Direct Measurements of the Giant Electrocaloric Effect in Soft and Solid Ferroelectric Materials , 2010 .

[47]  Alojz Poredoš,et al.  Comparison of Thermo-Hydraulic Properties of Heat Regenerators Applicable to Active Magnetic Refrigerators , 2009 .

[48]  I. Ponomareva,et al.  Intrinsic electrocaloric effect in ferroelectric alloys from atomistic simulations , 2009 .

[49]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[50]  V. Brodyansky,et al.  Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body , 1992 .

[51]  P. Egolf,et al.  Innovative ideas for future research on magnetocaloric technologies , 2010 .

[52]  Andrej Kitanovski,et al.  New thermodynamic cycles for magnetic refrigeration , 2014 .

[53]  Laurent Pilon,et al.  Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting , 2010 .

[54]  F. Scarpa,et al.  A dynamic 1-D model for a reciprocating active magnetic regenerator; influence of the main working parameters , 2010 .