SIGN- AND VOLATILITY-SWITCHING ARCH MODELS: THEORY AND APPLICATIONS TO INTERNATIONAL STOCK MARKETS

SUMMARY This paper develops two conditionally heteroscedastic models which allow an asymmetric reaction of the conditional volatility to the arrival of news. Such a reaction is induced by both the sign of past shocks and the size of past unexpected volatility. The proposed models are shown to converge in distribution to

[1]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[2]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[3]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[4]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[5]  Adrian Pagan,et al.  Alternative Models for Conditional Stock Volatility , 1989 .

[6]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[7]  Eduardo S. Schwartz,et al.  Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model , 1992 .

[8]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[9]  J. Zakoian Threshold heteroskedastic models , 1994 .

[10]  R. Engle,et al.  Implied ARCH models from options prices , 1992 .

[11]  Anil K. Bera,et al.  ARCH Models: Properties, Estimation and Testing , 1993 .

[12]  Dean P. Foster,et al.  Asypmtotic Filtering Theory for Univariate Arch Models , 1994 .

[13]  Daniel B. Nelson ARCH models as diffusion approximations , 1990 .

[14]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Daniel B. Nelson 3 – Conditional Heteroskedasticity in Asset Returns: A New Approach* , 1996 .

[17]  Merton H. Miller The Cost of Capital, Corporation Finance and the Theory of Investment , 1958 .

[18]  C. Gouriéroux,et al.  Qualitative threshold arch models , 1992 .

[19]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[20]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[21]  John Y. Campbell,et al.  No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns , 1991 .

[22]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[23]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[24]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[25]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[26]  J. Zakoian,et al.  Threshold Arch Models and Asymmetries in Volatility , 1993 .

[27]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[28]  S. Turnbull,et al.  Pricing foreign currency options with stochastic volatility , 1990 .

[29]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[30]  Eugene Wong,et al.  Stochastic processes in information and dynamical systems , 1979 .

[31]  N. Shephard,et al.  Estimation and Testing of Stochastic Variance Models , 1993 .