A Numerical Verification Method of Solutions for the Navier-Stokes Equations

A numerical verification method of the solution for the stationary Navier-Stokes equations is described. This method is based on the infinite dimensional fixed point theorem using the Newton-like operator. We present a verification algorithm which generates automatically on a computer a set including the exact solution. Some numerical examples are also discussed.

[1]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[2]  Nobito Yamamoto,et al.  A posteriori and constructive a priori error bounds for finite element solutions of the Stokes equations , 1998 .

[3]  Yoshitaka Watanabe,et al.  Constructive L2 Error Estimates for Finite Element Solutions of the Stokes Equations , 1998, Reliab. Comput..

[4]  M. Nakao Solving Nonlinear Elliptic Problems with Result Verification Using an H -1 Type Residual Iteration , 1993 .

[5]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[6]  Mitsuhiro Nakao,et al.  A numerical verification method for the existence of weak solutions for nonlinear boundary value problems , 1992 .

[7]  Seiji Kimura,et al.  On the Best Constant in the Error Bound for theH10-Projection into Piecewise Polynomial Spaces , 1998 .

[8]  Nobito Yamamoto,et al.  A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .

[9]  Mitsuhiro Nakao,et al.  Numerical verifications of solutions for nonlinear elliptic equations , 1993 .

[10]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[11]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[12]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[13]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .