A rough finite volume scheme for modeling two-phase flow in a pipeline

Abstract This paper deals with the resolution of the hyperbolic system of conservation laws which arises when modeling two-phase flow in an oil and gas pipeline. The model considered here is of the drift–flux type where the slip velocity between the two phases is given by a hydrodynamic model that accounts for the different flow regimes. The complexity of the closure relations prevents us from using classical numerical schemes such as Godunov or Roe's scheme. We propose another finite volume scheme, more rough for which the numerical flux is written as a centered scheme stabilized by a viscous term. The system considered has also the characteristic of having eigenvalues which are of very different orders of magnitude. We present a time discretization which is explicit for the “slow waves” and implicit for the “fast waves”. It allows the use of a time step which is governed only by the “slow waves” and keeps a good precision for these waves.

[1]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[2]  P. Lascaux,et al.  Analyse numérique matricielle appliquée a l'art de l'ingénieur , 1987 .

[3]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[4]  Christian Olivier,et al.  Resolution numerique des equations de Navier-Stokes pour un fluide compressible en maillage triangulaire , 1989 .

[5]  Tacite: Contribution Of Fluid Composition Tracking On Transient Multiphase Flow Simulation , 1997 .

[6]  Jean-Marie Masella Quelques méthodes numériques pour les écoulements diphasiques bi-fluide en conduites pétrolières , 1997 .

[7]  Q. Tran,et al.  Transient simulation of two-phase flows in pipes , 1998 .

[8]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[9]  Sylvie Benzoni-Gavage Analyse numérique des modèles hydrodynamiques d'écoulements diphasiques instationnaires dans les réseaux de production pétrolière , 1991 .

[10]  C. L. Pauchon,et al.  TACITE: A Transient Tool for Multiphase Pipeline and Well Simulation , 1994 .

[11]  R. Eymard,et al.  Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .

[12]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[13]  Jean-Antoine Désidéri,et al.  Compressible flow solvers using unstructured grids , 1992 .

[14]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .