Reduced Analytic Dependency Modeling: Robust Fusion for Visual Recognition

This paper addresses the robustness issue of information fusion for visual recognition. Analyzing limitations in existing fusion methods, we discover two key factors affecting the performance and robustness of a fusion model under different data distributions, namely (1) data dependency and (2) fusion assumption on posterior distribution. Considering these two factors, we develop a new framework to model dependency based on probabilistic properties of posteriors without any assumption on the data distribution. Making use of the range characteristics of posteriors, the fusion model is formulated as an analytic function multiplied by a constant with respect to the class label. With the analytic fusion model, we give an equivalent condition to the independent assumption and derive the dependency model from the marginal distribution property. Since the number of terms in the dependency model increases exponentially, the Reduced Analytic Dependency Model (RADM) is proposed based on the convergent property of analytic function. Finally, the optimal coefficients in the RADM are learned by incorporating label information from training data to minimize the empirical classification error under regularized least square criterion, which ensures the discriminative power. Experimental results from robust non-parametric statistical tests show that the proposed RADM method statistically significantly outperforms eight state-of-the-art score-level fusion methods on eight image/video datasets for different tasks of digit, flower, face, human action, object, and consumer video recognition.

[1]  Haibo He,et al.  SSC: A Classifier Combination Method Based on Signal Strength , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[2]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[3]  Andrew Zisserman,et al.  Automated Flower Classification over a Large Number of Classes , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[4]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[5]  W. Rudin Principles of mathematical analysis , 1964 .

[6]  Mario Cortina-Borja,et al.  Handbook of Parametric and Nonparametric Statistical Procedures, 5th edn , 2012 .

[7]  Fei-Fei Li,et al.  Combining the Right Features for Complex Event Recognition , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  Anderson Rocha,et al.  Robust Fusion: Extreme Value Theory for Recognition Score Normalization , 2010, ECCV.

[9]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[10]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[11]  Shuang Wu,et al.  Multimodal feature fusion for robust event detection in web videos , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[13]  Andrew Zisserman,et al.  Hand detection using multiple proposals , 2011, BMVC.

[14]  Shih-Fu Chang,et al.  Consumer video understanding: a benchmark database and an evaluation of human and machine performance , 2011, ICMR.

[15]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[16]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[17]  A. G. Amitha Perera,et al.  Multimedia event detection with multimodal feature fusion and temporal concept localization , 2013, Machine Vision and Applications.

[18]  Pong C. Yuen,et al.  Reduced Analytical Dependency Modeling for Classifier Fusion , 2012, ECCV.

[19]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  D. V. Lindley,et al.  An Introduction to Probability Theory and Its Applications. Volume II , 1967, The Mathematical Gazette.

[21]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[22]  Robert P. W. Duin,et al.  Handwritten digit recognition by combined classifiers , 1998, Kybernetika.

[23]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[24]  Feiping Nie,et al.  Heterogeneous Visual Features Fusion via Sparse Multimodal Machine , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Ernest Valveny,et al.  Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Ammad Ali,et al.  Face Recognition with Local Binary Patterns , 2012 .

[27]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[28]  Jian-Huang Lai,et al.  Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[29]  Anil K. Jain,et al.  A Principled Approach to Score Level Fusion in Multimodal Biometric Systems , 2005, AVBPA.

[30]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[31]  Marc Sebban,et al.  Discriminative feature fusion for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Anil K. Jain,et al.  Likelihood Ratio-Based Biometric Score Fusion , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[34]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[35]  O. J. Dunn Multiple Comparisons among Means , 1961 .

[36]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[37]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[38]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[39]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[41]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[42]  Jian-Huang Lai,et al.  Linear Dependency Modeling for Classifier Fusion and Feature Combination , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Naonori Ueda,et al.  Optimal Linear Combination of Neural Networks for Improving Classification Performance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Anil K. Jain,et al.  Decision-Level Fusion in Fingerprint Verification , 2001, Multiple Classifier Systems.

[45]  Yanxi Liu,et al.  Local Expert Forest of Score Fusion for Video Event Classification , 2012, ECCV.

[46]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[47]  Josef Kittler,et al.  Augmented Kernel Matrix vs Classifier Fusion for Object Recognition , 2011, BMVC.

[48]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[49]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[50]  Cordelia Schmid,et al.  Multimodal semi-supervised learning for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[51]  D. Sheskin Handbook of Parametric and Nonparametric Statistical Procedures: Third Edition , 2000 .

[52]  Dong Liu,et al.  Sample-Specific Late Fusion for Visual Category Recognition , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Kar-Ann Toh,et al.  Benchmarking a reduced multivariate polynomial pattern classifier , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Dong Liu,et al.  Robust late fusion with rank minimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[56]  Haifeng Chen,et al.  Robust fusion of uncertain information , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[57]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[58]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[59]  Pingzhi Fan,et al.  Performance evaluation of score level fusion in multimodal biometric systems , 2010, Pattern Recognit..

[60]  Ethem Alpaydin Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[61]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[62]  Pong C. Yuen,et al.  Multi-cue Visual Tracking Using Robust Feature-Level Fusion Based on Joint Sparse Representation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[64]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[65]  Jian Wang,et al.  Generalized Orthogonal Matching Pursuit , 2011, IEEE Transactions on Signal Processing.

[66]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Ronen Basri,et al.  Actions as Space-Time Shapes , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Dorin Comaniciu,et al.  Robust information fusion using variable-bandwidth density estimation , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[69]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Xudong Jiang,et al.  A reduced multivariate polynomial model for multimodal biometrics and classifiers fusion , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[71]  Andrew Zisserman,et al.  A Visual Vocabulary for Flower Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[72]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .