On MAXCUT in strictly supercritical random graphs, and coloring of random graphs and random tournaments

We use a theorem by Ding, Lubetzky and Peres describing the structure of the giant component of random graphs in the strictly supercritical regime, in order to determine the typical size of MAXCUT of $G\sim G\left(n,\frac {1+\varepsilon}n\right)$ in terms of $\varepsilon$. We then apply this result to prove the following conjecture by Frieze and Pegden. For every $\varepsilon>0$ there exists $\ell_\varepsilon$ such that \whp $G\sim G(n,\frac {1+\varepsilon}n)$ is not homomorphic to the cycle on $2\ell_\varepsilon+1$ vertices. We also consider the coloring properties of biased random tournaments. A $p$-random tournament on $n$ vertices is obtained from the transitive tournament by reversing each edge independently with probability $p$. We show that for $p=\Theta(\frac 1n)$ the chromatic number of a $p$-random tournament behaves similarly to that of a random graph with the same edge probability. To treat the case $p=\frac {1+\varepsilon}n$ we use the aforementioned result on MAXCUT.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[3]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[4]  Benny Sudakov,et al.  Cycles and matchings in randomly perturbed digraphs and hypergraphs , 2015, Electron. Notes Discret. Math..

[5]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[6]  A. Naor,et al.  The two possible values of the chromatic number of a random graph , 2005 .

[7]  David Gamarnik,et al.  Combinatorial approach to the interpolation method and scaling limits in sparse random graphs , 2010, STOC '10.

[8]  Luca Trevisan,et al.  Gadgets, approximation, and linear programming , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[9]  Marek Karpinski,et al.  Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems , 1999, J. Comput. Syst. Sci..

[10]  David Gamarnik,et al.  On the Max-Cut Over Sparse Random Graph , 2014 .

[11]  Quan Li,et al.  On the max‐cut of sparse random graphs , 2014, Random Struct. Algorithms.

[12]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Andrea Montanari,et al.  Extremal Cuts of Sparse Random Graphs , 2015, ArXiv.

[14]  Yuval Peres,et al.  Anatomy of the giant component: The strictly supercritical regime , 2012, Eur. J. Comb..

[15]  Alan M. Frieze,et al.  Between 2- and 3-Colorability , 2015, Electron. J. Comb..

[16]  Cristopher Moore,et al.  MAX k‐CUT and approximating the chromatic number of random graphs , 2003, Random Struct. Algorithms.

[17]  Alex D. Scott,et al.  Solving Sparse Random Instances of Max Cut and Max 2-CSP in Linear Expected Time , 2006, Combinatorics, Probability and Computing.

[18]  U. Feige,et al.  Spectral techniques applied to sparse random graphs , 2005 .

[19]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[20]  D. Achlioptas,et al.  A sharp threshold for k-colorability , 1999 .

[21]  Uriel Feige,et al.  Resolution lower bounds for the weak pigeon hole principle , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[22]  Vadim V. Lozin Between 2- and 3-colorability , 2005, Inf. Process. Lett..

[23]  Tomás Feder,et al.  Packing Edge-Disjoint Triangles in Given Graphs , 2012, Electron. Colloquium Comput. Complex..

[24]  Conrado Martínez,et al.  The MAX-CUT of sparse random graphs , 2012, SODA.

[25]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[26]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[27]  Andrzej Rucinski,et al.  On the evolution of a random tournament , 1996, Discret. Math..

[28]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[29]  Mohammad Taghi Hajiaghayi,et al.  Random MAX SAT, random MAX CUT, and their phase transitions , 2003, SODA '03.

[30]  Paul D. Seymour,et al.  Tournaments and colouring , 2013, J. Comb. Theory, Ser. B.

[31]  Paul D. Seymour,et al.  Tournaments with near-linear transitive subsets , 2014, J. Comb. Theory, Ser. B.

[32]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[33]  Noga Alon,et al.  The Probabilistic Method, Third Edition , 2008, Wiley-Interscience series in discrete mathematics and optimization.

[34]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[35]  Zsolt Tuza,et al.  Maximum cuts and largest bipartite subgraphs , 1993, Combinatorial Optimization.

[36]  Yuval Peres,et al.  Anatomy of a young giant component in the random graph , 2009, Random Struct. Algorithms.

[37]  Alan M. Frieze,et al.  The regularity lemma and approximation schemes for dense problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[38]  Tomasz Luczak A note on the sharp concentration of the chromatic number of random graphs , 1991, Comb..

[39]  Paola Campadelli,et al.  An Upper Bound for the Maximum Cut Mean Value , 1997, WG.