A set of orthogonal polynomials induced by a given orthogonal polynomial
暂无分享,去创建一个
[1] W. Gautschi. On mean convergence of extended Lagrange interpolation , 1992 .
[2] Paul Nevai. A new class of orthogonal polynomials , 1984 .
[3] M. Ismail,et al. On Sieved Orthogonal Polynomials II: Random Walk Polynomials , 1986, Canadian Journal of Mathematics.
[4] A. Bellen. Alcuni problemi aperti sulla convergenza in media dell’interpolazione Lagrangiana estesa , 1988 .
[5] J. Geronimo,et al. ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS VIA A POLYNOMIAL MAPPING , 1988 .
[6] W. Assche,et al. Sieved orthogonal polynomials and discrete measures with jumps dense in an interval , 1989 .
[7] Gene H. Golub,et al. On the calculation of Jacobi Matrices , 1983 .
[8] W. Gautschi. Orthogonality — Conventional and Unconventional — In Numerical Analysis , 1989 .
[9] V. Totik,et al. Extensions of Szegö's theory of orthogonal polynomials , 1987 .
[10] V. Totik,et al. Extensions of Szegö's theory of orthogonal polynomials, II , 1987 .
[11] R. Askey,et al. Sieved ultraspherical polynomials , 1984 .
[12] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[13] Sotirios E. Notaris,et al. An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions , 1988 .
[14] Sotirios E. Notaris. Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szego¨ type, II , 1990 .