Empirical Mode Decomposition for Trivariate Signals

An extension of empirical mode decomposition (EMD) is proposed in order to make it suitable for operation on trivariate signals. Estimation of local mean envelope of the input signal, a critical step in EMD, is performed by taking projections along multiple directions in three-dimensional spaces using the rotation property of quaternions. The proposed algorithm thus extracts rotating components embedded within the signal and performs accurate time-frequency analysis, via the Hilbert-Huang transform. Simulations on synthetic trivariate point processes and real-world three-dimensional signals support the analysis.

[1]  Toshihisa Tanaka,et al.  Signal Processing Techniques for Knowledge Extraction and Information Fusion , 2008 .

[2]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[3]  Jean Claude Nunes,et al.  Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..

[4]  Angelo M. Sabatini,et al.  Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis , 2006, Medical and Biological Engineering and Computing.

[5]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[6]  Nicolas Le Bihan,et al.  Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing , 2004, Signal Process..

[7]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Dean G. Duffy,et al.  The Application of Hilbert-Huang Transforms to Meteorological Datasets , 2004 .

[9]  Giorgio Cannata,et al.  MAC-EYE: a tendon driven fully embedded robot eye , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[10]  Erik B. Dam,et al.  Quaternions, Interpolation and Animation , 2000 .

[11]  Toshihisa Tanaka,et al.  Complex Empirical Mode Decomposition , 2007, IEEE Signal Processing Letters.

[12]  Danilo P. Mandic,et al.  The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes , 2009, IEEE Transactions on Signal Processing.

[13]  David Eberly,et al.  Quaternion Algebra and Calculus , 2002 .

[14]  Gabriel Rilling,et al.  Bivariate Empirical Mode Decomposition , 2007, IEEE Signal Processing Letters.

[15]  Andrew J. Hanson,et al.  Visualizing quaternions , 2005, SIGGRAPH Courses.

[16]  Muhammad Altaf,et al.  Rotation Invariant Complex Empirical Mode Decomposition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[17]  Danilo P. Mandic,et al.  Multiscale Image Fusion Using Complex Extensions of EMD , 2009, IEEE Transactions on Signal Processing.

[18]  Anna Linderhed Compression by image empirical mode decomposition , 2005, IEEE International Conference on Image Processing 2005.

[19]  Danilo P. Mandic,et al.  Complex Valued Nonlinear Adaptive Filters , 2009 .

[20]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[21]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  H. L. Hime “The Elements of Quaternions” , 1894, Nature.

[23]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[24]  D. Mandic,et al.  Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models , 2009 .