Energy considerations for a superlens based on metal/dielectric multilayers.

We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source. The interpretation of transmittance values greater than unity for evanescent waves is clarified with respect to the associated absorption losses.

[1]  H. Fetterman,et al.  High Frequency Probing of Nanometric Resolution Using Near-Field Optical Heterodyne Technology , 1999 .

[2]  Mark A. Ratner,et al.  Finite-difference time-domain studies of light transmission through nanohole structures , 2006 .

[3]  N. Mattiucci,et al.  Optical vortices during a superresolution process in a metamaterial , 2008 .

[4]  Michael Scalora,et al.  Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures , 1998 .

[5]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[6]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[7]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[8]  Jean M. Bennett,et al.  Precise Method for Measuring the Absolute Phase Change on Reflection , 1964 .

[9]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[10]  M. Centini,et al.  Tailoring metallodielectric structures for superresolution and superguiding applications in the visi , 2008, 0801.0749.

[11]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[12]  V. Podolskiy,et al.  Optimizing the superlens: Manipulating geometry to enhance the resolution , 2005, physics/0509067.

[13]  Michael Scalora,et al.  Transmissive properties of Ag/MgF2 photonic band gaps , 1998 .

[14]  Batra,et al.  Theory of the quantum size effect in simple metals. , 1986, Physical review. B, Condensed matter.

[15]  Shanhui Fan,et al.  All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals , 2006 .

[16]  J. Pendry,et al.  Imaging the near field , 2002, cond-mat/0207026.

[17]  B Bates,et al.  Interference filters for the far ultraviolet (1700 A to 2400 A). , 1966, Applied optics.

[18]  M. Soljačić,et al.  Wireless Power Transfer via Strongly Coupled Magnetic Resonances , 2007, Science.

[19]  Michael Scalora,et al.  LAMINATED PHOTONIC BAND STRUCTURES WITH HIGH CONDUCTIVITY AND HIGH TRANSPARENCY: METALS UNDER A NEW LIGHT , 1999 .

[20]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[21]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[22]  Mihai Ibanescu,et al.  Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. , 2005, Physical review letters.

[23]  A Malherbe,et al.  Interference filters for the far ultraviolet. , 1974, Applied optics.