Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy

Purpose: Most treatments for patients with metastatic melanoma have a low rate of complete regression and thus overall survival in these patients is poor. We investigated the ability of adoptive cell transfer utilizing autologous tumor-infiltrating lymphocytes (TIL) to mediate durable complete regressions in heavily pretreated patients with metastatic melanoma. Experimental Design: Ninety-three patients with measurable metastatic melanoma were treated with the adoptive transfer of autologous TILs administered in conjunction with interleukin-2 following a lymphodepleting preparative regimen on three sequential clinical trials. Ninety-five percent of these patients had progressive disease following a prior systemic treatment. Median potential follow-up was 62 months. Results: Objective response rates by Response Evaluation Criteria in Solid Tumors (RECIST) in the 3 trials using lymphodepleting preparative regimens (chemotherapy alone or with 2 or 12 Gy irradiation) were 49%, 52%, and 72%, respectively. Twenty of the 93 patients (22%) achieved a complete tumor regression, and 19 have ongoing complete regressions beyond 3 years. The actuarial 3- and 5-year survival rates for the entire group were 36% and 29%, respectively, but for the 20 complete responders were 100% and 93%. The likelihood of achieving a complete response was similar regardless of prior therapy. Factors associated with objective response included longer telomeres of the infused cells, the number of CD8+CD27+ cells infused, and the persistence of the infused cells in the circulation at 1 month (all P2 < 0.001). Conclusions: Cell transfer therapy with autologous TILs can mediate durable complete responses in patients with metastatic melanoma and has similar efficacy irrespective of prior treatment. Clin Cancer Res; 17(13); 4550–7. ©2011 AACR.

[1]  Franco Locatelli,et al.  Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  S. Rosenberg,et al.  CD8+ T Cell Immunity Against a Tumor/Self-Antigen Is Augmented by CD4+ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells , 2005, The Journal of Immunology.

[3]  Richard E. Slaughter,et al.  Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Jeffrey E Gershenwald,et al.  Final version of 2009 AJCC melanoma staging and classification. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  S. Rosenberg,et al.  CD8+ Enriched “Young” Tumor Infiltrating Lymphocytes Can Mediate Regression of Metastatic Melanoma , 2010, Clinical Cancer Research.

[6]  S. Rosenberg,et al.  Adoptive cell transfer: a clinical path to effective cancer immunotherapy , 2008, Nature Reviews Cancer.

[7]  Adrian P Gee,et al.  Treatment of nasopharyngeal carcinoma with Epstein-Barr virus--specific T lymphocytes. , 2005, Blood.

[8]  S. Rosenberg,et al.  Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells , 2005, The Journal of experimental medicine.

[9]  S. Rosenberg,et al.  Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  S. Rosenberg,et al.  Transfer Therapy Cancer Regression in Patients Receiving Cell Lymphocyte Clonotypes Correlates with Cutting Edge: Persistence of Transferred , 2022 .

[11]  D. Srivastava,et al.  Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. , 1998, Blood.

[12]  S. Rosenberg,et al.  Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. , 1994, Journal of the National Cancer Institute.

[13]  D. Schadendorf,et al.  Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  D. Schadendorf,et al.  Improved survival with ipilimumab in patients with metastatic melanoma. , 2010, The New England journal of medicine.

[15]  S. Riddell,et al.  Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. , 1995, The New England journal of medicine.

[16]  S. Rosenberg,et al.  Cancer immunotherapy: moving beyond current vaccines , 2004, Nature Medicine.

[17]  S. Rosenberg,et al.  Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. , 2009, Blood.

[18]  S. Rosenberg,et al.  Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  S. Rosenberg,et al.  Telomere Length of Transferred Lymphocytes Correlates with In Vivo Persistence and Tumor Regression in Melanoma Patients Receiving Cell Transfer Therapy1 , 2005, The Journal of Immunology.

[20]  A. Chang,et al.  Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. , 1985, The New England journal of medicine.

[21]  K. Flaherty,et al.  Inhibition of mutated, activated BRAF in metastatic melanoma. , 2010, The New England journal of medicine.

[22]  M. Raffeld,et al.  Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes , 2002, Science.

[23]  R. Fisher,et al.  High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  S. Rosenberg,et al.  Minimally Cultured Tumor-infiltrating Lymphocytes Display Optimal Characteristics for Adoptive Cell Therapy , 2008, Journal of immunotherapy.

[25]  S. Rosenberg,et al.  Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes , 2006, Science.

[26]  Jianhong Cao,et al.  Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. , 2008, The New England journal of medicine.

[27]  S. Rosenberg,et al.  Increased Intensity Lymphodepletion Enhances Tumor Treatment Efficacy of Adoptively Transferred Tumor-specific T Cells , 2010, Journal of immunotherapy.

[28]  B. Shalmon,et al.  Clinical Responses in a Phase II Study Using Adoptive Transfer of Short-term Cultured Tumor Infiltration Lymphocytes in Metastatic Melanoma Patients , 2010, Clinical Cancer Research.

[29]  S. Rosenberg,et al.  Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. , 1988, The New England journal of medicine.

[30]  S. Rosenberg,et al.  Modulation by IL-2 of CD70 and CD27 Expression on CD8+ T Cells: Importance for the Therapeutic Effectiveness of Cell Transfer Immunotherapy1 , 2006, The Journal of Immunology.

[31]  S. Steinberg,et al.  Treatment of Metastatic Melanoma Using Interleukin-2 Alone or in Conjunction with Vaccines , 2008, Clinical Cancer Research.

[32]  S. Rosenberg,et al.  T Cells Associated with Tumor Regression Recognize Frameshifted Products of the CDKN2A Tumor Suppressor Gene Locus and a Mutated HLA Class I Gene Product , 2004, The Journal of Immunology.

[33]  Steven A. Rosenberg,et al.  Generation of Tumor-Infiltrating Lymphocyte Cultures for Use in Adoptive Transfer Therapy for Melanoma Patients , 2003, Journal of immunotherapy.

[34]  S. Mackinnon,et al.  Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. , 1995, Blood.

[35]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[36]  S. Rosenberg,et al.  Adoptive immunotherapy for cancer: building on success , 2006, Nature Reviews Immunology.

[37]  S. Steinberg,et al.  Tumor Infiltrating Lymphocyte Therapy for Metastatic Melanoma: Analysis of Tumors Resected for TIL , 2010, Journal of immunotherapy.

[38]  S. Rosenberg,et al.  Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. , 1994, JAMA.

[39]  S. Rosenberg,et al.  Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. , 1987, Journal of immunology.

[40]  S. Rosenberg,et al.  Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. , 2005, The Journal of clinical investigation.

[41]  H. Heslop,et al.  Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin's Disease , 2004, The Journal of experimental medicine.

[42]  W. Wilmanns,et al.  Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. , 1990, Blood.