Ferroelectric solar cells based on inorganic-organic hybrid perovskites

Ferroelectric solar cells based on ferroelectric oxides have attracted significant attention owing to many unique advantages, such as the switchable photocurrent and photovoltage, and the above bandgap open circuit voltages. However, the small photocurrent densities of the typical ferroelectric solar cells greatly limit their photovoltaic performance. In this report, we experimentally revealed the polarization switching properties of inorganic–organic hybrid perovskites and developed ferroelectric solar cells based on the hybrid perovskites. Hybrid perovskite methylammonium lead trihalide (MAPbX3) thin films exhibited 180° domain phase switching and polarization hysteresis loops. Ferroelectric solar cells based on the mixed halide MAPbI3−xClx thin film demonstrate a power conversion efficiency of 6.7% and the ferroelectric solar cells display switchable photovoltaic effects. This work provides an alternative but exhilarating solution for high-performance ferroelectric solar cells beyond inorganic ferroelectric oxides.

[1]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[2]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[3]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[4]  Chongyin Yang,et al.  New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect , 2013, Scientific Reports.

[5]  H. Ryu,et al.  Diode and photocurrent effect in ferroelectric BaTiO3−δ , 2011 .

[6]  P. Guyot-Sionnest,et al.  Slow Electron Cooling in Colloidal Quantum Dots , 2008, Science.

[7]  Kui Yao,et al.  Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films , 2010, Advanced materials.

[8]  M. Shen,et al.  High-efficiency ferroelectric-film solar cells with an n-type Cu₂O cathode buffer layer. , 2012, Nano letters.

[9]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[10]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[11]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[12]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[13]  M. Alexe,et al.  Tip-enhanced photovoltaic effects in bismuth ferrite , 2011 .

[14]  Jinsong Huang,et al.  Arising applications of ferroelectric materials in photovoltaic devices , 2014 .

[15]  Ram S. Katiyar,et al.  Switchable photovoltaic effect in bilayer graphene/BiFeO3/Pt heterostructures , 2014 .

[16]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[17]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[18]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[19]  R. Moubah,et al.  Photoelectric Effects in Single Domain BiFeO3 Crystals , 2012 .

[20]  Silvia Licoccia,et al.  Photovoltaic properties of Bi2FeCrO6 epitaxial thin films , 2011 .

[21]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[22]  Marin Alexe,et al.  Role of domain walls in the abnormal photovoltaic effect in BiFeO3 , 2013, Nature Communications.

[23]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[24]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[25]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[26]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[27]  Guifu Zou,et al.  Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects , 2013, Scientific Reports.

[28]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[29]  Jinsong Huang,et al.  Understanding the effect of ferroelectric polarization on power conversion efficiency of organic photovoltaic devices , 2012 .

[30]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[31]  R. Xiong,et al.  An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl₃). , 2014, Angewandte Chemie.

[32]  Fan Zheng,et al.  First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI(3-x)Cl(x). , 2015, The journal of physical chemistry letters.

[33]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[34]  K. Awaga,et al.  Storage of an electric field for photocurrent generation in ferroelectric-functionalized organic devices , 2014, Nature Communications.

[35]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[36]  Xiaofeng Wang,et al.  Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr,Ti)O3 film , 2014 .

[37]  E. Mosconi,et al.  Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation , 2014 .

[38]  Yung C. Liang,et al.  High efficient photovoltaics in nanoscaled ferroelectric thin films , 2008 .

[39]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[40]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[41]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[42]  Wei Huang,et al.  Bandgap tuning of multiferroic oxide solar cells , 2014, Nature Photonics.

[43]  Yang Yang,et al.  Efficiency enhancement in organic solar cells with ferroelectric polymers. , 2011, Nature materials.

[44]  Jinbao Xu,et al.  Enhanced open voltage of BiFeO3 polycrystalline film by surface modification of organolead halide perovskite , 2014 .

[45]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[46]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[47]  Harry A. Atwater,et al.  Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling , 2014 .

[48]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[49]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[50]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[51]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[52]  M. Alexe,et al.  A photoferroelectric material is more than the sum of its parts. , 2012, Nature Materials.

[53]  A. L. Tolstikhina,et al.  Giant bulk photovoltaic effect in thin ferroelectricBaTiO3films , 2014 .

[54]  Xiaofeng Wang,et al.  Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film. , 2014, Nanoscale.

[55]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[56]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[57]  R. Ramesh,et al.  Photovoltaic effects in BiFeO3 , 2009 .

[58]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[59]  John A. Carr,et al.  Enhanced charge separation in organic photovoltaic films doped with ferroelectric dipoles , 2012 .

[60]  Georg Kresse,et al.  Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites , 2014, Nature Communications.

[61]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.