Comparison of fatigue strengths of biocompatible Ti-15Zr-4Nb-4Ta alloy and other titanium materials

[1]  J. Dumbleton,et al.  Microstructure and Properties of a New Beta Titanium Alloy, Ti-12Mo-6Zr-2Fe, Developed for Surgical Implants , 1996 .

[2]  P. Postak,et al.  Femoral Stem Fatigue Characteristics of Modular Hip Designs , 1997 .

[3]  D. Wirtz,et al.  The Morse Taper Junction in Modular Revision Hip Replacement – A Biomechanical and Retrieval Analysis - Die konische Steckverbindung in der modularen Revisionsendoprothetik der Hüfte – Vergleich eines explantierten Prothesenschaftes zur In-vitro-Testung , 2000, Biomedizinische Technik. Biomedical engineering.

[4]  V Vécsei,et al.  The fatigue strength of small diameter tibial nails. , 2001, Injury.

[5]  Y. Okazaki Effect of friction on anodic polarization properties of metallic biomaterials. , 2002, Biomaterials.

[6]  Mitsuo Niinomi,et al.  Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. , 2003, Biomaterials.

[7]  R. Crowninshield,et al.  The Role of Proximal Femoral Support in Stress Development Within Hip Prostheses , 2004, Clinical orthopaedics and related research.

[8]  Kihei Kobayashi,et al.  Comparison of metal concentrations in rat tibia tissues with various metallic implants. , 2004, Biomaterials.

[9]  H. Toda,et al.  Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments , 2005 .

[10]  T. Karachalios,et al.  The 20-Year Outcome of the Charnley Arthroplasty in Younger and Older Patients , 2005, Clinical orthopaedics and related research.

[11]  Kihei Kobayashi,et al.  Osteocompatibility of Stainless Steel, Co-Cr-Mo, Ti-6Al-4V and Ti-15Zr-4Nb-4Ta Alloy Implants in Rat Bone Tissue , 2005 .

[12]  Yoshimitsu Okazaki,et al.  Comparison of metal release from various metallic biomaterials in vitro. , 2005, Biomaterials.

[13]  M. Niinomi,et al.  Super Elastic Functional β Titanium Alloy with Low Young's Modulus for Biomedical Applications , 2005 .

[14]  C. Ju,et al.  A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. , 2005, Biomaterials.

[15]  P. Harvie,et al.  Fracture of the hydroxyapatite-ceramic-coated JRI-Furlong femoral component: body mass index and implications for selection of the implant. , 2007, The Journal of bone and joint surgery. British volume.

[16]  M. Peivandi,et al.  In-body corrosion fatigue failure of a stainless steel orthopaedic implant with a rare collection of different damage mechanisms , 2007 .

[17]  J. Chao,et al.  Failure analysis of a Ti6Al4V cementless HIP prosthesis , 2007 .

[18]  Mitsuo Niinomi,et al.  Fatigue characteristics of metallic biomaterials , 2007 .

[19]  T. Cui,et al.  Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. , 2008, Acta biomaterialia.

[20]  C. Boehlert,et al.  Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications , 2008 .