Receding horizon filtering for a class of discrete time-varying nonlinear systems with multiple missing measurements

This paper is concerned with the receding horizon filtering problem for a class of discrete time-varying nonlinear systems with multiple missing measurements. The phenomenon of missing measurements occurs in a random way and the missing probability is governed by a set of stochastic variables obeying the given Bernoulli distribution. By exploiting the projection theory combined with stochastic analysis techniques, a Kalman-type receding horizon filter is put forward to facilitate the online applications. Furthermore, by utilizing the conditional expectation, a novel estimation scheme of state covariance matrices is proposed to guarantee the implementation of the filtering algorithm. Finally, a simulation example is provided to illustrate the effectiveness of the established filtering scheme.

[1]  Pyung-Soo Kim An alternative FIR filter for state estimation in discrete-time systems , 2010, Digit. Signal Process..

[2]  Konrad Reif,et al.  Stochastic Stability of the Extended Kalman Filter With Intermittent Observations , 2010, IEEE Transactions on Automatic Control.

[3]  Wook Hyun Kwon,et al.  FIR filters and recursive forms for discrete-time state-space models , 1987, Autom..

[4]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[5]  D. Jacobson A general result in stochastic optimal control of nonlinear discrete-time systems with quadratic performance criteria , 1974 .

[6]  Zidong Wang,et al.  Variance-Constrained Filtering for a Class of Nonlinear Time-Varying Systems With Multiple Missing Measurements : The Finite-Horizon Case , 2010 .

[7]  Xiaofeng Wang,et al.  Networked Strong Tracking Filtering with Multiple Packet Dropouts: Algorithms and Applications , 2014, IEEE Transactions on Industrial Electronics.

[8]  Yuriy S. Shmaliy,et al.  Optimal Gains of FIR Estimators for a Class of Discrete-Time State-Space Models , 2008, IEEE Signal Processing Letters.

[9]  Edwin Engin Yaz,et al.  Robust minimum variance linear state estimators for multiple sensors with different failure rates , 2007, Autom..

[10]  L. Ljung,et al.  Extended Levinson and Chandrasekhar equations for general discrete-time linear estimation problems , 1978 .

[11]  Jinling Liang,et al.  Finite-horizon H∞ filtering for time-varying delay systems with randomly varying nonlinearities and sensor saturations , 2014 .

[12]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[13]  Jun Hu,et al.  Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements , 2012, Autom..

[14]  Bo Shen A survey on the applications of the Krein-space theory in signal estimation , 2014 .

[15]  S. Sangsuk-Iam,et al.  Analysis of discrete-time Kalman filtering under incorrect noise covariances , 1990 .

[16]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[17]  Tongwen Chen,et al.  Optimal ${\cal H}_{2}$ Filtering in Networked Control Systems With Multiple Packet Dropout , 2007, IEEE Transactions on Automatic Control.

[18]  Edwin Engin Yaz,et al.  State estimation of uncertain nonlinear stochastic systems with general criteria , 2001, Appl. Math. Lett..

[19]  Fang-Xiang Wu,et al.  Estimating parameters of S-systems by an auxiliary function guided coordinate descent method , 2014 .

[20]  Jun Hu,et al.  Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements , 2013, Int. J. Control.

[21]  Yuriy S. Shmaliy,et al.  Optimal horizons for a one-parameter family of unbiased FIR filters , 2008, Digit. Signal Process..

[22]  Wook Hyun Kwon,et al.  Short-time Fourier analysis via optimal harmonic FIR filters , 1997, IEEE Trans. Signal Process..

[23]  Giorgio Battistelli,et al.  Receding-horizon estimation for switching discrete-time linear systems , 2005, IEEE Transactions on Automatic Control.

[24]  Wook Hyun Kwon,et al.  A receding horizon unbiased FIR filter for discrete-time state space models , 2002, Autom..

[25]  Wook Hyun Kwon,et al.  Fast algorithms for optimal FIR filter and smoother of discrete-time state-space models , 1994, Autom..

[26]  Kevin Guelton,et al.  Actuator and sensor fault detection and isolation of an actuated seat via nonlinear multi-observers , 2014 .

[27]  Daniel W. C. Ho,et al.  Variance-Constrained ${\cal H}_{\infty}$ Filtering for a Class of Nonlinear Time-Varying Systems With Multiple Missing Measurements: The Finite-Horizon Case , 2010, IEEE Transactions on Signal Processing.

[28]  Giorgio Battistelli,et al.  Receding-horizon estimation for discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[29]  Giorgio Battistelli,et al.  Receding-horizon estimation for switching discrete-time linear systems , 2004, CDC.

[30]  Yeung Sam Hung,et al.  Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case , 2010, Autom..

[31]  P. J. Buxbaum Fixed-memory recursive filters (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[32]  Zidong Wang,et al.  Robust filtering with stochastic nonlinearities and multiple missing measurements , 2009, Autom..

[33]  Daniel W. C. Ho,et al.  Variance-constrained filtering for uncertain stochastic systems with missing measurements , 2003, IEEE Trans. Autom. Control..

[34]  A. Jazwinski Limited memory optimal filtering , 1968 .