Mobilization of Medial and Lateral Frontal-Striatal Circuits in Cocaine Users and Controls: An Interleaved TMS/BOLD Functional Connectivity Study

[1]  A. Bonci,et al.  Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study , 2016, European Neuropsychopharmacology.

[2]  Logan T Dowdle,et al.  What goes up, can come down: Novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals , 2015, Brain Research.

[3]  H. Gu,et al.  Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. , 2015, JAMA psychiatry.

[4]  Yong He,et al.  Interactions between the Salience and Default-Mode Networks Are Disrupted in Cocaine Addiction , 2015, The Journal of Neuroscience.

[5]  S. Kennedy,et al.  rTMS of the Dorsomedial Prefrontal Cortex for Major Depression: Safety, Tolerability, Effectiveness, and Outcome Predictors for 10 Hz Versus Intermittent Theta-burst Stimulation , 2015, Brain Stimulation.

[6]  S. Houle,et al.  Investing in the Future: Stimulation of the Medial Prefrontal Cortex Reduces Discounting of Delayed Rewards , 2015, Neuropsychopharmacology.

[7]  Conor Liston,et al.  Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression , 2014, Biological Psychiatry.

[8]  A. Zangen,et al.  Transcranial magnetic stimulation in the treatment of substance addiction , 2014, Annals of the New York Academy of Sciences.

[9]  Brent G. Nelson,et al.  Changes in resting functional connectivity during abstinence in stimulant use disorder: a preliminary comparison of relapsers and abstainers. , 2014, Drug and alcohol dependence.

[10]  P. Manganotti,et al.  rTMS in the Treatment of Drug Addiction: An Update about Human Studies , 2014, Behavioural neurology.

[11]  G. Glover,et al.  Causal interactions between fronto-parietal central executive and default-mode networks in humans , 2013, Proceedings of the National Academy of Sciences.

[12]  Xingbao Li,et al.  Probing the Frontostriatal Loops Involved in Executive and Limbic Processing via Interleaved TMS and Functional MRI at Two Prefrontal Locations: A Pilot Study , 2013, PLoS ONE.

[13]  James J Prisciandaro,et al.  Prospective associations between brain activation to cocaine and no-go cues and cocaine relapse. , 2013, Drug and alcohol dependence.

[14]  Amit Etkin,et al.  Hippocampal Network Connectivity and Activation Differentiates Post-Traumatic Stress Disorder From Generalized Anxiety Disorder , 2013, Neuropsychopharmacology.

[15]  F. Woodward Hopf,et al.  Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking , 2013, Nature.

[16]  K. Deisseroth,et al.  Optogenetic inhibition of cocaine seeking in rats , 2012, Addiction biology.

[17]  Colleen A. Hanlon,et al.  Elevated gray and white matter densities in cocaine abstainers compared to current users , 2011, Psychopharmacology.

[18]  Brent G. Nelson,et al.  Frontal Hyperconnectivity Related to Discounting and Reversal Learning in Cocaine Subjects , 2011, Biological Psychiatry.

[19]  Yihong Yang,et al.  Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity , 2010, NeuroImage.

[20]  Samuel Asensio,et al.  Altered neural response of the appetitive emotional system in cocaine addiction: an fMRI Study , 2010, Addiction biology.

[21]  M. Yücel,et al.  The role of affective dysregulation in drug addiction. , 2010, Clinical psychology review.

[22]  Rita Z. Goldstein,et al.  Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers , 2010, PloS one.

[23]  Rita Z. Goldstein,et al.  Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later , 2010, Synapse.

[24]  H. Garavan,et al.  Neural mechanisms underlying drug-related cue distraction in active cocaine users , 2009, Pharmacology Biochemistry and Behavior.

[25]  Antonio P. Strafella,et al.  rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex , 2009, PloS one.

[26]  M. Le Moal,et al.  Neurobiological mechanisms for opponent motivational processes in addiction , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  E. Smeraldi,et al.  Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving. , 2008, The American journal on addictions.

[28]  John Listerud,et al.  Prelude to Passion: Limbic Activation by “Unseen” Drug and Sexual Cues , 2008, PloS one.

[29]  M. Le Moal,et al.  Addiction and the brain antireward system. , 2008, Annual review of psychology.

[30]  Rita Z. Goldstein,et al.  Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction , 2007, Neuroscience.

[31]  Á. Pascual-Leone,et al.  One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving. , 2007, Drug and alcohol dependence.

[32]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[33]  Tracy R. Henderson,et al.  Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. , 2005, Journal of neurophysiology.

[34]  Hartwig R. Siebner,et al.  BOLD MRI responses to repetitive TMS over human dorsal premotor cortex , 2005, NeuroImage.

[35]  J. Cohn,et al.  Interleaved Transcranial Magnetic Stimulation/Functional MRI Confirms that Lamotrigine Inhibits Cortical Excitability in Healthy Young Men , 2004, Neuropsychopharmacology.

[36]  Daryl E Bohning,et al.  A TMS coil positioning/holding system for MR image-guided TMS interleaved with fMRI , 2003, Clinical Neurophysiology.

[37]  F. Andrew Kozel,et al.  Mechanisms and the Current State of Transcranial Magnetic Stimulation , 2003, CNS Spectrums.

[38]  Jean-Lud Cadet,et al.  Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study , 2003, NeuroImage.

[39]  S. Bestmann,et al.  On the synchronization of transcranial magnetic stimulation and functional echo‐planar imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[40]  P. Strick,et al.  Basal-ganglia 'projections' to the prefrontal cortex of the primate. , 2002, Cerebral cortex.

[41]  K. Berridge,et al.  The Neuroscience of Natural Rewards: Relevance to Addictive Drugs , 2002, The Journal of Neuroscience.

[42]  P. Acton,et al.  Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients , 2002, Biological Psychiatry.

[43]  S. Bestmann,et al.  Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS) , 2001, Neuroreport.

[44]  J. Lorberbaum,et al.  Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI , 2001, Biological Psychiatry.

[45]  T. Paus,et al.  Repetitive Transcranial Magnetic Stimulation of the Human Prefrontal Cortex Induces Dopamine Release in the Caudate Nucleus , 2001, The Journal of Neuroscience.

[46]  J. Lorberbaum,et al.  Motor Cortex Brain Activity Induced by 1-Hz Transcranial Magnetic Stimulation Is Similar in Location and Level to That for Volitional Movement , 2000, Investigative radiology.

[47]  J. Lorberbaum,et al.  How coil-cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation. , 2000, The Journal of neuropsychiatry and clinical neurosciences.

[48]  E M Wassermann,et al.  BOLD‐f MRI response to single‐pulse transcranial magnetic stimulation (TMS) , 2000, Journal of magnetic resonance imaging : JMRI.

[49]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[50]  B. Biswal,et al.  Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI , 2000, Magnetic resonance in medicine.

[51]  Ziad Nahas,et al.  A combined TMS/fMRI study of intensity-dependent TMS over motor cortex , 1999, Biological Psychiatry.

[52]  J. Lorberbaum,et al.  Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. , 1998, Investigative radiology.

[53]  G. Koob,et al.  Drug Addiction: The Yin and Yang of Hedonic Homeostasis , 1996, Neuron.

[54]  R. Delaney,et al.  Transcranial magnetic stimulation , 1989, Neurology.

[55]  Burton Crane What Goes up Can Come Down , 1961 .

[56]  S. Haber,et al.  The Reward Circuit: Linking Primate Anatomy and Human Imaging , 2010, Neuropsychopharmacology.

[57]  D. Sheehan,et al.  The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. , 1998, The Journal of clinical psychiatry.

[58]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[59]  HighWire Press The journal of neuroscience : the official journal of the Society for Neuroscience. , 1981 .