Exponential Fourier densities on S2 and optimal estimation and detection for directional processes
暂无分享,去创建一个
[1] E. H. Thompson,et al. Alignment methods for strapdown inertial systems. , 1966 .
[2] K. Mardia. Statistics of Directional Data , 1972 .
[3] N. D. Mermin,et al. Special Functions: A Group Theoretic Approach , 1970 .
[4] A. Willsky,et al. Estimation for rotational processes with one degree of freedom--Part I: Introduction and continuous- , 1975 .
[5] James Ting-Ho Lo,et al. Exponential Fourier densities and optimal estimation and detection on the circle , 1977, IEEE Trans. Inf. Theory.
[6] Peter Scherk,et al. Homographies, quaternions and rotations , 1966 .
[7] Alan S. Willsky,et al. Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.
[8] A. Willsky,et al. Estimation for Rotational Processes with One Degree of Freedom , 1972 .
[9] Itzhack Y. Bar-itzhack,et al. Optimum Normalization of a Computed Quaternion of Rotation , 1971, IEEE Transactions on Aerospace and Electronic Systems.
[10] R. S. Bucy,et al. An Optimal Phase Demodulator , 1975 .
[11] R. Fisher. Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[12] J. Stuelpnagel. On the Parametrization of the Three-Dimensional Rotation Group , 1964 .
[13] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .