Agent-Based Models

Agent-based models (ABMs) provide a methodology to explore systems of interacting, adaptive, diverse, spatially situated actors. Outcomes in ABMs can be equilibrium points, equilibrium distributions, cycles, randomness, or complex patterns; these outcomes are not directly determined by assumptions but instead emerge from the interactions of actors in the model. These behaviors may range from rational and payoff-maximizing strategies to rules that mimic heuristics identified by cognitive science. Agent-based techniques can be applied in isolation to create high-fidelity models and to explore new questions using simple constructions. They can also be used as a complement to deductive techniques. Overall, ABMs offer the potential to advance social sciences and to help us better understand our complex world.

[1]  Joshua M. Epstein,et al.  Generative Social Science: Studies in Agent-Based Computational Modeling (Princeton Studies in Complexity) , 2007 .

[2]  Berrin Erdogan,et al.  Delineating and Reviewing the Role of Newcomer Capital in Organizational Socialization , 2014 .

[3]  W. S. Robinson Ecological correlations and the behavior of individuals. , 1950, International journal of epidemiology.

[4]  Melanie Mitchell,et al.  Complexity - A Guided Tour , 2009 .

[5]  Douglass B. Lee Requiem for Large-Scale Models , 1973 .

[6]  Jonathan Schaeffer,et al.  Poker as a Testbed for Machine Intelligence Research , 1998 .

[7]  R. A. Sayer,et al.  Understanding Urban Models versus Understanding Cities , 1979 .

[8]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[9]  Murray Levine,et al.  Principles of Community Psychology: Perspectives and Applications , 1987 .

[10]  Per Bak,et al.  How Nature Works , 1996 .

[11]  Gilbert F. White,et al.  Global Change: Geographical Approaches , 1993 .

[12]  Ferdinando Semboloni,et al.  An Urban and Regional Model Based on Cellular Automata , 1997 .

[13]  F. Schweitzer Brownian Agents and Active Particles , 2003, Springer Series in Synergetics.

[14]  E. Irwin,et al.  The Problem of Identifying Land Use Spillovers: Measuring the Effects of Open Space on Residential Property Values , 2001 .

[15]  D. Madigan,et al.  A Systematic Statistical Approach to Evaluating Evidence from Observational Studies , 2014 .

[16]  I Colón,et al.  Resistance to a residential AIDS home: an empirical test of NIMBY. , 1999, Journal of homosexuality.

[17]  Wenzhong Shi,et al.  Development of Voronoi-based cellular automata -an integrated dynamic model for Geographical Information Systems , 2000, Int. J. Geogr. Inf. Sci..

[18]  Heckman Simple Statistical Models for Discrete Panel Data Developed and Applied to Test the Hypothesis of True State Dependence against the Hypothesis of Spurious State Dependence , 1978 .

[19]  M. Gell-Mann A Theory of Everything. (Book Reviews: The Quark and the Jaguar. Adventures in the Simple and the Complex.) , 1994 .

[20]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[21]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[22]  S. D. Marchi,et al.  District Complexity as an Advantage in Congressional Elections , 2009 .

[23]  Scott de Marchi,et al.  Adaptive Models and Electoral Instability , 1999 .

[24]  Daniel Diermeier,et al.  Institutionalism as a Methodology , 2003 .

[25]  R. Gifford Environmental Psychology: Principles and Practice , 1987 .

[26]  Elinor Ostrom,et al.  Institutions, ecosystems, and sustainability , 2000 .

[27]  Kendall Scott,et al.  UML distilled - applying the standard object modeling language , 1997 .

[28]  Monica G. Turner,et al.  Methods to evaluate the performance of spatial simulation models , 1989 .

[29]  Darla K. Munroe,et al.  Jobs, Houses, and Trees: Changing Regional Structure, Local Land-Use Patterns, and Forest Cover in Southern Indiana , 2003 .

[30]  J. Fowler,et al.  Policy-Motivated Parties in Dynamic Political Competition , 2007 .

[31]  John H. Miller,et al.  Auctions with Artificial Adaptive Agents , 1995 .

[32]  S. Page,et al.  Political Institutions and Sorting in a Tiebout Model , 1997 .

[33]  Juval Portugali,et al.  Self-Organization and the City , 2009, Encyclopedia of Complexity and Systems Science.

[34]  B. Turner,et al.  Changes in land use and land cover: a global perspective , 1995 .

[35]  K. Judd Computational Economics and Economic Theory: Substitutes or Complements , 1997 .

[36]  E. Irwin,et al.  Theory, data, methods: developing spatially explicit economic models of land use change , 2001 .

[37]  S. Page Uncertainty, Difficulty, and Complexity , 2008 .

[38]  Robert L. Axtell,et al.  Aligning simulation models: A case study and results , 1996, Comput. Math. Organ. Theory.

[39]  Michael Laver,et al.  Cabinet Formation and Portfolio Distribution in European Multiparty Systems , 2014, British Journal of Political Science.

[40]  Dawn C. Parker Landscape Outcomes in a Model of Edge Effect Externalities: A Computational Economics Approach , 1999 .

[41]  Wander Jager,et al.  Faculteit Der Economische Wetenschappen En Econometric Serie Research Memoranda Fashions, Habits and Changing Preferences: Simulations of Psychological Factors Affecting Market Dynamics Fashions, Habits and Changing Preferences: Simulation of Psychological Factors Affecting Market Dynamics , 2022 .

[42]  François Bousquet,et al.  SHADOC: a multi‐agent model to tackle viability of irrigated systems , 2000, Ann. Oper. Res..

[43]  Jürgen Assfalg,et al.  CityDev, an interactive multi-agents urban model on the web , 2004, Comput. Environ. Urban Syst..

[44]  Paul Krugman,et al.  Development, Geography, and Economic Theory , 1995 .

[45]  Eckart Zwicker,et al.  Simulation und Analyse dynamischer Systeme in den Wirtschafts- und Sozialwissenschaften , 1981 .

[46]  Paul M. Torrens,et al.  Geosimulation: Object-based Modeling of Urban Phenomena , 2022 .

[47]  Vincent Conitzer,et al.  Computing the optimal strategy to commit to , 2006, EC '06.

[48]  Leah Hoffmann,et al.  Crowd control , 2009, CACM.

[49]  Itzhak Benenson,et al.  High-resolution census data: a simple way to make them useful , 2003, Data Sci. J..

[50]  Lars-Erik Cederman,et al.  Computational Models of Social Forms: Advancing Generative Process Theory1 , 2005, American Journal of Sociology.

[51]  Michael Batty,et al.  The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades , 2003, Int. J. Geogr. Inf. Sci..

[52]  R. Houghton The worldwide extent of land-use change , 1994 .

[53]  François Bousquet,et al.  Multiagent simulations of hunting wild meat in a village in eastern Cameroon , 2001 .

[54]  Michael X Cohen,et al.  Harnessing Complexity: Organizational Implications of a Scientific Frontier , 2000 .

[55]  W. Brock,et al.  Interactions-Based Models , 2000 .

[56]  Peter B. R. Hazell,et al.  Mathematical Programming for Economic Analysis in Agriculture. , 1987 .

[57]  John H. Miller,et al.  Active Nonlinear Tests (Ants) of Complex Simulation Models , 1998 .

[58]  Santiago Saura,et al.  Sensitivity of landscape pattern metrics to map spatial extent , 2001 .

[59]  Jean-Arcady Meyer,et al.  From SAB90 to SAB94: four years of animat research , 1994 .

[60]  Joshua M. Epstein Agent-based computational models and generative social science , 1999 .

[61]  C. Vlek,et al.  Behaviour in commons dilemmas: Homo economicus and Homo psychologicus in an ecological-economic model , 2000 .

[62]  M. K. Trani,et al.  Key Elements of Landscape Pattern Measures , 1999, Environmental management.

[63]  Gerhard M. van den Top,et al.  The social dynamics of deforestation in the Sierra Madre, Philippines , 1998 .

[64]  J. Tse,et al.  Resistance to community-based learning disability facilities: Implications for prevention , 1995 .

[65]  Robert B. Bechtel,et al.  Environment & behavior : an introduction , 1997 .

[66]  D. Oglethorpe,et al.  Farm level economics modelling within a river catchment decision support system , 1995 .

[67]  Scott E. Page,et al.  Basins of attraction and equilibrium selection under different learning rules , 2009 .

[68]  Steven C Bankes,et al.  Agent-based modeling: A revolution? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Christopher J. Arnusch HYDROLOGY AND WATER QUALITY , 2015 .

[70]  S. Manson Simplifying complexity: a review of complexity theory , 2001 .

[71]  Jason Antony Byrne,et al.  The human relationship with nature , 2010 .

[72]  R. Palmer,et al.  Artificial economic life: a simple model of a stockmarket , 1994 .

[73]  David Lazer,et al.  Friends, Brokers, and Transitivity: Who Informs Whom in Washington Politics? , 2004, The Journal of Politics.

[74]  Paul M. Torrens,et al.  Cellular Automata and Multi-agent Systems as Planning Support Tools , 2003 .

[75]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[76]  Olivier Klepper,et al.  Multivariate aspects of model uncertainty analysis: tools for sensitivity analysis and calibration , 1997 .

[77]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[78]  Blake LeBaron,et al.  Stochastic Volatility as a Simple Generator of Financial Power-Laws and Long Memory , 2001 .

[79]  R. Axelrod The Complexity of Cooperation , 2011 .

[80]  Robert Axelrod Advancing the art of simulation in the social sciences , 1997 .

[81]  Emilio F. Moran,et al.  Developing the Amazon. , 1981 .

[82]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[83]  Thomas Berger,et al.  Trade -offs, efficiency gains and technical change - Modeling water management and land use within a multiple-agent framework , 2002 .

[84]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[85]  M A Nowak,et al.  Spatial games and the maintenance of cooperation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. Hinde,et al.  Governing the Commons: The Evolution of Institutions for Governing the Commons: The Evolution of Institutions for Collective Action Collective Action , 2010 .

[87]  Donald R. Nelson,et al.  Remote Sensing and GIs at Farm Property Level: Demography and Deforestation in the Brazilian Amazon , 1999 .

[88]  Tracy Xiao Liu,et al.  Behavioral spillovers and cognitive load in multiple games: An experimental study , 2012, Games Econ. Behav..

[89]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[90]  Ian S. Lustick,et al.  Deliberative democracy and public discourse: the agent-based argument repertoire model 1 , 2000 .

[91]  Grady Booch,et al.  Object-Oriented Analysis and Design with Applications , 1990 .

[92]  E. Lambin,et al.  Land-Cover-Change Trajectories in Southern Cameroon , 2000 .

[93]  C. Nunes,et al.  Land-Use and Land-Cover Change (LUCC): Implementation Strategy , 1999 .

[94]  R. Gil Pontius,et al.  Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA , 2001 .

[95]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[96]  Timothy A. Kohler,et al.  Be there then: a modeling approach to settlement determinants and spatial efficiency among late ancestral pueblo populations of the Mesa Verde region, U.S. southwest , 2000 .

[97]  H. J. Vriend,et al.  ABLOoM: Location Behaviour, Spatial Patterns, and Agent-based Modelling , 2001, J. Artif. Soc. Soc. Simul..

[98]  Joshua M. Epstein,et al.  Growing artificial societies , 1996 .

[99]  J. Fowler Connecting the Congress: A Study of Cosponsorship Networks , 2006, Political Analysis.

[100]  Michael Laver,et al.  A Tournament of Party Decision Rules , 2008 .

[101]  P. Anderson More is different. , 1972, Science.

[102]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[103]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[104]  Erica Jen,et al.  Robust design : a repertoire of biological, ecological, and engineering case studies , 2005 .

[105]  M. Rabin Psychology and Economics , 1997 .

[106]  H. Couclelis A Theoretical Framework for Alternative Models of Spatial Decision and Behavior , 1986 .

[107]  Peter D. Hoff,et al.  Modeling Dependencies in International Relations Networks , 2004, Political Analysis.

[108]  Scott E. Page,et al.  Diversity and Complexity , 2010 .

[109]  A. Veldkamp,et al.  CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica , 1996 .

[110]  Alfons Balmann Pfadabhängigkeiten in Agrarstrukturentwicklungen : Begriff, Ursachen und Konsequenzen , 1995 .

[111]  François Bousquet,et al.  Non-merchant Economy and Multi-Agent System: An Analysis of Structuring Exchanges , 1998, MABS.

[112]  Robert Jervis,et al.  System Effects: Complexity in Political and Social Life , 1997 .

[113]  Scott E. Page,et al.  Agent‐Based Modeling , 2010 .

[114]  Tom P. Evans,et al.  MULTI-SCALE ANALYSIS OF LANDCOVER COMPOSITION AND LANDSCAPE MANAGEMENT OF PUBLIC AND PRIVATE LANDS IN INDIANA , 2001 .

[115]  N. Lam,et al.  On the Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences* , 1992 .

[116]  Alain Karsenty,et al.  Economic Theory of Renewable Resource Management: A Multi-Agent System Approach , 1998, MABS.

[117]  P. Torrens,et al.  Cellular Automata and Urban Simulation: Where Do We Go from Here? , 2001 .

[118]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[119]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[120]  Dianne Gilbert Not in My Backyard , 1993 .

[121]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[122]  M. Janssen,et al.  Using artificial agents to understand laboratory experiments of common-pool resources with real agents , 2002 .

[123]  James H. Fowler,et al.  Legislative cosponsorship networks in the US House and Senate , 2006, Soc. Networks.

[124]  Wilhelm Brandes,et al.  On the limitations of armchair economics: Some views of an armchair agricultural economist , 1989 .

[125]  T. Schelling Models of Segregation , 1969 .

[126]  Scott E. Page,et al.  Individual and cultural learning in stag hunt games with multiple actions , 2010 .

[127]  W. Groot Environmental Science Theory: Concepts and Methods in a One-World, Problem-Oriented Paradigm , 1992 .

[128]  William Alonso,et al.  PREDICTING BEST WITH IMPERFECT DATA , 1968 .

[129]  Dirk Helbing,et al.  Agent-Based Modeling , 2012 .

[130]  John H. Miller,et al.  Adaptive Parties in Spatial Elections , 1992, American Political Science Review.

[131]  Guy Engelen,et al.  Cellular Automata as the Basis of Integrated Dynamic Regional Modelling , 1997 .

[132]  David Lazer,et al.  The co‐evolution of individual and network , 2001 .

[133]  A. Zippay,et al.  Establishing Group Housing: Community Outreach Methods , 1999 .

[134]  J. M. Sakoda The checkerboard model of social interaction , 1971 .

[135]  Michael H. Bowling,et al.  Regret Minimization in Games with Incomplete Information , 2007, NIPS.

[136]  Anand S. Rao,et al.  BDI Agents: From Theory to Practice , 1995, ICMAS.

[137]  H. Randy Gimblett,et al.  Integrating geographic information systems and agent-based modeling techniques for simulating social and ecological processes , 2001 .

[138]  H. Van Dyke Parunak,et al.  Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users' Guide , 1998, MABS.

[139]  Bai-Lian Li,et al.  Fractal geometry applications in description and analysis of patch patterns and patch dynamics , 2000 .

[140]  David A. Siegel,et al.  Modeling the Institutional Foundation of Parliamentary Government Formation , 2012 .

[141]  François Bousquet,et al.  The creation of a reputation in an artificial society organised by a gift system , 2001, J. Artif. Soc. Soc. Simul..

[142]  John M. de Figueiredo,et al.  Advancing the Empirical Research on Lobbying , 2013 .

[143]  Philip M. Fearnside,et al.  Human Carrying Capacity of the Brazilian Rainforest , 1986 .

[144]  Scott E. Page,et al.  Can Game(s) Theory Explain Culture? , 2007 .

[145]  Ken Kollman The Potential Value of Computational Models in Social Science Research , 2012 .

[146]  Graeme D. Ruxton,et al.  The need for biological realism in the updating of cellular automata models , 1998 .

[147]  W. Mitchell,et al.  Coalition Formation in Standard-Setting Alliances , 1995 .

[148]  Christophe Le Page,et al.  Modelling spatial practices and social representations of space using multi-agent systems , 2000, Adv. Complex Syst..

[149]  Marcus Wigan,et al.  Agent-Based Modelling of Pedestrian Movements: The Questions That Need to Be Asked and Answered , 2001 .

[150]  Nils B. Weidmann,et al.  Violence and Ethnic Segregation: A Computational Model Applied to Baghdad , 2013 .

[151]  J. Bouma,et al.  A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use , 1999 .

[152]  J. Crutchfield Is anything ever new?: considering emergence , 1999 .

[153]  T. Schelling Micromotives and Macrobehavior , 1978 .

[154]  David O'Sullivan,et al.  “So Go Downtown”: Simulating Pedestrian Movement in Town Centres , 2001 .

[155]  A. Alchian Uncertainty, Evolution, and Economic Theory , 1950, Journal of Political Economy.

[156]  Michael M. Ting,et al.  A Behavioral Model of Turnout , 2003, American Political Science Review.

[157]  Chris Webster,et al.  Simulations of urban growth with models of pollution property rights and subcentre formation , 1997 .

[158]  James H. Fowler,et al.  Dynamic Parties and Social Turnout: An Agent‐Based Model1 , 2005, American Journal of Sociology.

[159]  Fulong Wu,et al.  Simulating artificial cities in a GIS environment: urban growth under alternative regulation regimes , 2000, Int. J. Geogr. Inf. Sci..

[160]  J. Anderies,et al.  Grazing Management, Resilience, and the Dynamics of a Fire-driven Rangeland System , 2002, Ecosystems.

[161]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[162]  Timothy A. Kohler,et al.  Dynamics in human and primate societies: agent-based modeling of social and spatial processes , 2000 .

[163]  Robert L. Axtell,et al.  An agent-based model of the housing market bubble in metropolitan Washington, D.C. , 2014 .

[164]  R. Mare,et al.  Neighborhood Choice and Neighborhood Change1 , 2006, American Journal of Sociology.

[165]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[166]  G. Fischer,et al.  Land-use and land-cover change. Science/research plan , 1995 .

[167]  Richard J. Gaylord,et al.  Simulating Society: A Mathematica®Toolkit For Modeling Socioeconomic Behavior , 1998 .

[168]  Robert L. Axtell,et al.  WHY AGENTS? ON THE VARIED MOTIVATIONS FOR AGENT COMPUTING IN THE SOCIAL SCIENCES , 2000 .

[169]  Colin Camerer Behavioral Game Theory: Experiments in Strategic Interaction , 2003 .

[170]  Daniel Thalmann,et al.  Introduction: Creating Artificial Life in Virtual Reality , 1994 .

[171]  Hélène Mathian,et al.  SIMPOP: A Multiagent System for the Study of Urbanism , 1997 .

[172]  K. Happe,et al.  Applying Parallel Genetic Algorithms to Economic Problems: The Case of Agricultural Land Markets , 2001 .

[173]  E. Ostrom,et al.  Rules, Games, and Common-Pool Resources , 1994 .

[174]  Scott E. Page,et al.  Interpreted and generated signals , 2009, J. Econ. Theory.

[175]  E. Paykel,et al.  The evolution of life events research in psychiatry. , 2001, Journal of affective disorders.

[176]  Jenna Bednar,et al.  The Robust Federation: Principles of Design , 2008 .

[177]  Alex Weisiger,et al.  Fading Friendships: Alliances, Affinities and the Activation of International Identities , 2012, British Journal of Political Science.

[178]  Stephen Ansolabehere,et al.  Voting Weights and Formateur Advantages in the Formation of Coalition Governments , 2003 .

[179]  Andrew Nelson,et al.  Analysing data across geographic scales in Honduras: detecting levels of organisation within systems , 2001 .

[180]  C. Manski Identification of Endogenous Social Effects: The Reflection Problem , 1993 .

[181]  R. Leombruni,et al.  Why are economists sceptical about agent-based simulations? , 2005 .

[182]  M. Batty Polynucleated Urban Landscapes , 2001 .

[183]  R. Pontius QUANTIFICATION ERROR VERSUS LOCATION ERROR IN COMPARISON OF CATEGORICAL MAPS , 2000 .

[184]  Cristina B. Gibson,et al.  Where Global and Virtual Meet: The Value of Examining the Intersection of These Elements in Twenty-First-Century Teams , 2014 .

[185]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[186]  E. Wilson,et al.  The biophilia hypothesis , 1993 .

[187]  Paul M. Torrens,et al.  Cellular Models of Urban Systems , 2000, ACRI.

[188]  Charles S. Taber,et al.  A Computational Model of the Citizen as Motivated Reasoner: Modeling the Dynamics of the 2000 Presidential Election , 2010 .

[189]  E. Glaeser,et al.  Crime and Social Interactions , 1995 .

[190]  T. Allen,et al.  Toward a Unified Ecology. , 1994 .

[191]  Nelson Minar,et al.  The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations , 1996 .

[192]  Scott E. Page,et al.  Emergent cultural signatures and persistent diversity: A model of conformity and consistency , 2010 .

[193]  L. Tesfatsion HOW ECONOMISTS CAN GET ALIFE , 1995 .

[194]  Bernard P. Zeigler,et al.  Theory of Modelling and Simulation , 1979, IEEE Transactions on Systems, Man and Cybernetics.

[195]  François Bousquet,et al.  Role-playing games for opening the black box of multi-agent systems: method and lessons of its application to Senegal River Valley irrigated systems , 2001, J. Artif. Soc. Soc. Simul..

[196]  S. Page,et al.  THE COMPLEXITY OF SYSTEM EFFECTS , 2012 .

[197]  J. Ferejohn,et al.  Bargaining in Legislatures , 1989, American Political Science Review.

[198]  F. Wu,et al.  An Experiment on the Generic Polycentricity of Urban Growth in a Cellular Automatic City , 1998 .

[199]  Amber Wichowsky,et al.  District Complexity and the Personal Vote , 2012 .

[200]  Scott E. Page On Incentives and Updating in Agent Based Models , 1997 .

[201]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[202]  S. Page,et al.  Essay: Tipping points , 2012 .

[203]  Michael Laver,et al.  Policy and the Dynamics of Political Competition , 2005, American Political Science Review.

[204]  Stephen R. Kellert,et al.  Kinship to Mastery: Biophilia In Human Evolution And Development , 1997 .

[205]  Hong Qian,et al.  Statistics and Related Topics in Single-Molecule Biophysics. , 2014, Annual review of statistics and its application.

[206]  Eduardo S. Brondizio,et al.  INTEGRATING AMAZONIAN VEGETATION, LAND-USE, AND SATELLITE DATA , 1994 .

[207]  R. Huckfeldt,et al.  Political Disagreement: The Survival of Diverse Opinions within Communication Networks , 2004 .

[208]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[209]  Nicolaas J. Vriend,et al.  An Illustration of the Essential Difference between Individual and Social Learning, and its Consequences for Computational Analyses , 1998 .

[210]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[211]  David A. van Dyk,et al.  The Role of Statistics in the Discovery of a Higgs Boson , 2014 .

[212]  O TeresaMin-Jung,et al.  Mental Health and the Built Environment: More than Bricks and Mortar , 1996 .

[213]  Michael Laver,et al.  Negotiation in legislatures over government formation , 2011 .

[214]  Diana Richards,et al.  Political Complexity: Nonlinear Models of Politics , 2000 .

[215]  M. Laver,et al.  Party Competition: An Agent-Based Model , 2011 .

[216]  John L. Casti Can you trust it?: on the reliability of computer simulation and the validity of models , 1997 .

[217]  Torsten Hägerstrand,et al.  Innovation Diffusion As a Spatial Process , 1967 .

[218]  C. Emmeche,et al.  On emergence and explanation , 1997 .

[219]  D. Marsh,et al.  Personal accounts of consumer/survivors: insights and implications. , 2000, Journal of Clinical Psychology.

[220]  Y. Chou,et al.  Map Resolution and Spatial Autocorrelation , 2010 .

[221]  I. Benenson MULTI-AGENT SIMULATIONS OF RESIDENTIAL DYNAMICS IN THE CITY , 1998 .

[222]  M. Goodchild,et al.  Geographic Information Systems and Science (second edition) , 2001 .

[223]  Scott E. Page,et al.  Computational Methods and Models of Politics , 2006 .

[224]  Dirk Helbing,et al.  Crowd behaves as excitable media during Mexican wave , 2002 .

[225]  Eduardo S. Brondizio,et al.  A dynamic model of household decision-making and parcel level landcover change in the eastern Amazon , 2001 .

[226]  Ian S. Lustick,et al.  Secessionism in Multicultural States: Does Sharing Power Prevent or Encourage It? , 2004, American Political Science Review.

[227]  James H. Fowler,et al.  Habitual Voting and Behavioral Turnout , 2006, The Journal of Politics.