Investigation of the mechanical stability of polyethylene glycol hydrogel reinforced with cellulose nanofibrils for wound healing: Molecular dynamics simulation

[1]  A. Karimipour,et al.  Fabrication and characterization of synthesized hydroxyapatite/ethanolamine for bone tissue engineering application , 2022, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[2]  A. Karimipour,et al.  Fabrication and characterization of nanocrystalline hydroxyapatite reinforced with silica-magnetite nanoparticles with proper thermal conductivity , 2022, Materials Chemistry and Physics.

[3]  A. Karimipour,et al.  The effects of initial temperature and pressure on the mechanical properties of reinforced calcium phosphate cement with magnesium nanoparticles: A molecular dynamics approach , 2022, International Communications in Heat and Mass Transfer.

[4]  L. Sartore,et al.  Degradation-Dependent Stress Relaxing Semi-Interpenetrating Networks of Hydroxyethyl Cellulose in Gelatin-PEG Hydrogel with Good Mechanical Stability and Reversibility , 2021, Gels.

[5]  A. Karimipour,et al.  Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection , 2020 .

[6]  Baolin Guo,et al.  Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds , 2020 .

[7]  Mostafa Safdari Shadloo,et al.  A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption , 2020, Journal of Thermal Analysis and Calorimetry.

[8]  D. Werner,et al.  Prism-Based DGTD With a Simplified Periodic Boundary Condition to Analyze FSS With D2n Symmetry in a Rectangular Array Under Normal Incidence , 2019, IEEE Antennas and Wireless Propagation Letters.

[9]  D. Toghraie,et al.  Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses , 2019, Journal of Molecular Liquids.

[10]  O. Oderinde,et al.  Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties , 2018 .

[11]  A. Gaharwar,et al.  Nanoengineered injectable hydrogels for wound healing application. , 2018, Acta biomaterialia.

[12]  A. Karimipour,et al.  Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid , 2018 .

[13]  Miriam,et al.  Organic Functionalized Carbon Nanostructures for Functional Polymer‐Based Nanocomposites , 2016 .

[14]  V. Thakur,et al.  Self-healing polymer nanocomposite materials: A review , 2015 .

[15]  T. Lisse,et al.  The role of nuclear hormone receptors in cutaneous wound repair , 2015, Cell biochemistry and function.

[16]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[17]  A. Thompson,et al.  Computational aspects of many-body potentials , 2012 .

[18]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[19]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[20]  R. Mathur,et al.  Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites , 2008, Nanoscale Research Letters.

[21]  K. Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[22]  M. Kokabi,et al.  PVA–clay nanocomposite hydrogels for wound dressing , 2007 .

[23]  S. Enoch,et al.  Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged , 2004 .

[24]  H. Rasche Haemostasis and thrombosis: an overview , 2001 .

[25]  G R Tobin,et al.  Physiology and healing dynamics of chronic cutaneous wounds. , 1998, American journal of surgery.

[26]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[27]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[28]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[29]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[30]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[31]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[32]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[33]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[34]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[35]  Rajiv Saini,et al.  Nanotechnology: The Future Medicine , 2010, Journal of cutaneous and aesthetic surgery.

[36]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[37]  D. Orgill,et al.  The pathophysiologic basis for wound healing and cutaneous regeneration , 2009 .

[38]  Y. Kassir,et al.  Cloning and mapping of CDC40, a Saccharomyces cerevisiae gene with a role in DNA repair , 2004, Current Genetics.

[39]  Tamar Schlick,et al.  Pursuing Laplace's vision on modern computers , 1996 .