Entropy: a guide for the perplexed
暂无分享,去创建一个
[1] R. Frigg,et al. Typicality and the Approach to Equilibrium in Boltzmannian Statistical Mechanics , 2009, Philosophy of Science.
[2] Charlotte Werndl,et al. Are deterministic descriptions and indeterministic descriptions observationally equivalent , 2009, 1310.1615.
[3] C. Werndl. DETERMINISTIC VERSUS INDETERMINISTIC DESCRIPTIONS: NOT THAT DIFFERENT AFTER ALL? , 2009 .
[4] C. Werndl. What Are the New Implications of Chaos for Unpredictability? , 2009, The British Journal for the Philosophy of Science.
[5] R. Frigg,et al. A Field Guide to Recent Work on the Foundations of Statistical Mechanics. , 2008, 0804.0399.
[6] D. A. Lavis,et al. Boltzmann, Gibbs, and the Concept of Equilibrium , 2007, Philosophia Scientiæ.
[7] Roman Frigg,et al. The ergodic hierarchy, randomness and Hamiltonian chaos ☆ , 2006 .
[8] A. G. Bashkirov. Renyi entropy as a statistical entropy for complex systems , 2006 .
[9] Roman Frigg,et al. Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the Kolmogorov–Sinai entropy for Hamiltonian dynamical systems , 2006 .
[10] M. Hemmo,et al. Von Neumann’s Entropy Does Not Correspond to Thermodynamic Entropy* , 2006, Philosophy of Science.
[11] Eulalia Szmidt,et al. Uncertainty and Information: Foundations of Generalized Information Theory , 2005 .
[12] R. Sorkin. Ten theses on black hole entropy , 2005, hep-th/0504037.
[13] Roman Frigg,et al. In What Sense is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour?—Bridging the Gap Between Dynamical Systems Theory and Communication Theory , 2004, The British Journal for the Philosophy of Science.
[14] D. H. Mellor,et al. Probability: A Philosophical Introduction , 2004 .
[15] D. A. Lavis,et al. The Spin-Echo System Reconsidered , 2003, cond-mat/0311527.
[16] P. Jizba,et al. The world according to R enyi: thermodynamics of multifractal systems , 2002, cond-mat/0207707.
[17] Chuang Liu,et al. The Logic of Thermostatistical Physics , 2001 .
[18] S. Goldstein. Boltzmann's Approach to Statistical Mechanics , 2001, cond-mat/0105242.
[19] J. Uffink. Bluff Your Way in the Second Law of Thermodynamics , 2000, cond-mat/0005327.
[20] J. Lebowitz. Statistical Mechanics: A Selective Review of Two Central Issues , 1999, math-ph/0010018.
[21] Robert W. Batterman,et al. Chaos and algorithmic complexity , 1996 .
[22] C. Howson. Theories of Probability , 1995 .
[23] Orly Shenker,et al. Fractal geometry is not the geometry of nature , 1994 .
[24] Lawrence Sklar,et al. Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics , 1993 .
[25] Shunsuke Ihara,et al. Information theory - for continuous systems , 1993 .
[26] C. Beck,et al. Thermodynamics of chaotic systems: References , 1993 .
[27] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[28] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[29] R. Mañé,et al. Ergodic Theory and Differentiable Dynamics , 1986 .
[30] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[31] Robert Shaw,et al. The Dripping Faucet As A Model Chaotic System , 1984 .
[32] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[33] A. Wehrl. General properties of entropy , 1978 .
[34] Wilson A. Sutherland,et al. Introduction to Metric and Topological Spaces , 1975 .
[35] John Hawkes,et al. Hausdorff Measure, Entropy, and the Independence of Small Sets , 1974 .
[36] L. Goodwyn. Comparing Topological Entropy with Measure-Theoretic Entropy , 1972 .
[37] R. Bowen. Periodic points and measures for Axiom $A$ diffeomorphisms , 1971 .
[38] G. Pólya. Patterns of plausible inference , 1970 .
[39] E. T. Jaynes. Gibbs vs Boltzmann Entropies , 1965 .
[40] Harold Grad,et al. The many faces of entropy , 1961 .
[41] A. B. Pippard,et al. The Elements of Classical Thermodynamics , 1958 .
[42] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[43] Claude E. Shannon,et al. The mathematical theory of communication , 1950 .
[44] R. Tolman,et al. The Principles of Statistical Mechanics. By R. C. Tolman. Pp. xix, 661. 40s. 1938. International series of monographs on physics. (Oxford) , 1939, The Mathematical Gazette.
[45] R. Hartley. Transmission of information , 1928 .
[46] J. Gibbs. Elementary Principles in Statistical Mechanics , 1902 .
[47] R. Frigg,et al. Why Typicality Does Not Explain the Approach to Equilibrium , 2011 .
[48] R. Frigg,et al. Determinism and Chance from a Humean Perspective , 2010 .
[49] J. Honerkamp,et al. Thermodynamik und Statistische Mechanik , 2010 .
[50] Arno Berger,et al. Chaos and Chance: An Introduction to Stochastic Aspects of Dynamics , 2001 .
[51] Jos Ufnk,et al. Bluff your way in the Second Law of Thermodynamics , 2001 .
[52] D. Gillies. Philosophical Theories of Probability , 2000 .
[53] A. Shiryayev. New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebesgue Spaces , 1993 .
[54] Lawrence Sklar,et al. Physics and Chance , 1993 .
[55] E. Ott. Chaos in Dynamical Systems: Contents , 1993 .
[56] G. A. Edgar. Measure, Topology, and Fractal Geometry , 1990 .
[57] C. Howson,et al. Scientific Reasoning: The Bayesian Approach , 1989 .
[58] E. T. Jaynes,et al. Papers on probability, statistics and statistical physics , 1983 .
[59] John Earman,et al. Laplacian Determinism, or Is This Any Way to Run a Universe? , 1971 .
[60] Mary Hesse,et al. Models and analogies in science , 1970 .
[61] G. Wyllie. Elementary Statistical Mechanics , 1970 .
[62] O. Penrose. Foundations of statistical mechanics , 1969 .
[63] H. Reiss. Methods of thermodynamics , 1965 .
[64] T. Austin,et al. Ergodic Theory , 2022 .
[65] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[66] A. Rényi. On Measures of Entropy and Information , 1961 .
[67] R. Lindsay,et al. The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .