A Revisit of the Semi-Adaptive Method for Singular Degenerate Reaction-Diffusion Equations

[1]  Qin Sheng,et al.  A compound adaptive approach to degenerate nonlinear quenching problems , 1999 .

[2]  Qin Sheng,et al.  An adaptive grid method for degenerate semilinear quenching problems , 2000 .

[3]  Qin Sheng,et al.  Adaptive decomposition finite difference methods for solving singular problems—A review , 2009 .

[4]  Tao Tang,et al.  An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models , 2011, SIAM J. Sci. Comput..

[5]  G. Poole,et al.  A Survey on M-Matrices , 1974 .

[6]  Nejla Nouaili A Liouville theorem for a heat equation and applications for quenching , 2011 .

[7]  Abdul-Qayyum M. Khaliq,et al.  Modified arc-length adaptive algorithms for degenerate reaction-diffusion equations , 2002, Appl. Math. Comput..

[8]  Yunqing Huang,et al.  Moving mesh methods with locally varying time steps , 2004 .

[9]  R. Ferreira Numerical quenching for the semilinear heat equation with a singular absorption , 2009 .

[10]  J. Verwer,et al.  A numerical study of three moving-grid methods for one-dimensional partial differential equations which are based on the method of lines , 1990 .

[11]  Q. Sheng,et al.  Nonlinear variation of parameter methods for summary difference equations in several independent variables , 1994 .

[12]  C. Y. Chan,et al.  Parabolic Quenching for Nonsmooth Convex Domains , 1994 .

[13]  Q. Sheng,et al.  Solving degenerate quenching-combustion equations by an adaptive splitting method on evolving grids , 2013 .

[14]  M. Honnor,et al.  A numerical coordinate transformation for efficient evaluation of oscillatory integrals over wave boundary integrals , 2009 .

[15]  Hong Cheng,et al.  Solving Degenerate Reaction-Diffusion Equations via Variable Step Peaceman-Rachford Splitting , 2004, SIAM J. Sci. Comput..

[16]  Shan Zhao,et al.  Numerical solution of the Helmholtz equation with high wavenumbers , 2004 .

[17]  Howard A. Levine,et al.  Quenching, nonquenching, and beyond quenching for solution of some parabolic equations , 1989 .

[18]  Arieh Iserles,et al.  A First Course in the Numerical Analysis of Differential Equations: The diffusion equation , 2008 .