Abstract Despite the complex nature of fractional calculus, it is still fairly possible to reduce this complexity by using integer-order approximation. Each integer-order approximation has its own trade-offs from the complexity, sensitivity, and accuracy points of view. In this chapter, two different fractional-order electronic circuits are studied: the Wien oscillator and the CCII-based KHN filter with two different fractional elements of orders α and β. The investigation is concerned with changes in the response of these two circuits under two approximations: Oustaloup and Matsuda. A detailed review of each approximation technique is provided as well as its design procedure. Oscillator and filter responses are simulated using MATLAB. Foster-I realization is used to implement the approximated Wien oscillator and filter transfer functions as circuits in order to simulate them in PSpice. The responses are compared to the exact solution to investigate which achieves the lowest error. For oscillators, the comparison is based on oscillation condition and oscillation frequency while for filters, the focus is on filter fundamental frequencies. This is a big issue in filter design: maximum or minimum frequency, right phase frequency, and half-power frequency.