Visualisation of Pareto Front Approximation: A Short Survey and Empirical Comparisons

Visualisation is an effective way to facilitate the analysis and understanding of multivariate data. In the context of multi-objective optimisation, comparing to quantitative performance metrics, visualisation is, in principle, able to provide a decision maker better insights about Pareto front approximation sets (e.g. the distribution of solutions, the geometric characteristics of Pareto front approximation) thus to facilitate the decision-making (e.g. the exploration of trade-off relationship, the knee region or region of interest). In this paper, we overview some currently prevalent visualisation techniques according to the way how data is represented. To have a better understanding of the pros and cons of different visualisation techniques, we empirically compare six representative visualisation techniques for the exploratory analysis of different Pareto front approximation sets obtained by four state-of-the-art evolutionary multi-objective optimisation algorithms on the classic DTLZ benchmark test problems. From the empirical results, we find that visual comparisons also follow the No-Free-Lunch theorem where no single visualisation technique is able to provide a comprehensive understanding of the characteristics of a Pareto front approximation set. In other words, a specific type of visualisation technique is only good at exploring a particular aspect of the data.

[1]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[2]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[3]  Hua Huang,et al.  Manifold Learning for Visualizing and Analyzing High-Dimensional Data , 2010, IEEE Intelligent Systems.

[4]  Tea Tusar,et al.  A taxonomy of methods for visualizing pareto front approximations , 2018, GECCO.

[5]  Xin Yao,et al.  Integration of Preferences in Decomposition Multiobjective Optimization , 2017, IEEE Transactions on Cybernetics.

[6]  Gary G. Yen,et al.  Visualization and Performance Metric in Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[7]  Qingfu Zhang,et al.  Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition , 2014, IEEE Transactions on Evolutionary Computation.

[8]  Qingfu Zhang,et al.  Interrelationship-Based Selection for Decomposition Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[9]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[10]  Álvaro Fialho,et al.  Multi-Objective Differential Evolution with Adaptive Control of Parameters and Operators , 2011, LION.

[11]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.

[12]  Carlos A. Coello Coello,et al.  Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering , 2012, IEEE Transactions on Evolutionary Computation.

[13]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[14]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[15]  M. Ashby MULTI-OBJECTIVE OPTIMIZATION IN MATERIAL DESIGN AND SELECTION , 2000 .

[16]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[17]  Xin Yao,et al.  Adjusting Parallel Coordinates for Investigating Multi-objective Search , 2017, SEAL.

[18]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[19]  Xin Yao,et al.  R-Metric: Evaluating the Performance of Preference-Based Evolutionary Multiobjective Optimization Using Reference Points , 2018, IEEE Transactions on Evolutionary Computation.

[20]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[21]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[22]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[23]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[24]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[25]  Qingfu Zhang,et al.  Evolutionary Many-Objective Optimization Based on Adversarial Decomposition , 2017, IEEE Transactions on Cybernetics.

[26]  Tea Tusar,et al.  Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review and the Prosection Method , 2015, IEEE Transactions on Evolutionary Computation.

[27]  Xavier Blasco Ferragud,et al.  A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization , 2008, Inf. Sci..

[28]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[29]  Kalyanmoy Deb,et al.  A dual-population paradigm for evolutionary multiobjective optimization , 2015, Inf. Sci..

[30]  Mao Lin Huang,et al.  Two axes re-ordering methods in parallel coordinates plots , 2016, J. Vis. Lang. Comput..

[31]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[32]  Hisao Ishibuchi,et al.  Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes , 2017, IEEE Transactions on Evolutionary Computation.

[33]  Jonathan E. Fieldsend,et al.  Visualizing Mutually Nondominating Solution Sets in Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[34]  Sam Kwong,et al.  Multi-objective differential evolution with self-navigation , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[35]  Shahryar Rahnamayan,et al.  3D-RadVis: Visualization of Pareto front in many-objective optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[36]  Sam Kwong,et al.  A general framework for evolutionary multiobjective optimization via manifold learning , 2014, Neurocomputing.

[37]  Hisao Ishibuchi,et al.  How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison , 2018, Evolutionary Computation.

[38]  Christina Bloebaum,et al.  Hyper-Radial Visualization (HRV) method with range-based preferences for multi-objective decision making , 2009 .

[39]  Xin Yao,et al.  Dynamic Multiobjectives Optimization With a Changing Number of Objectives , 2016, IEEE Transactions on Evolutionary Computation.

[40]  Antonin Ponsich,et al.  A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications , 2013, IEEE Transactions on Evolutionary Computation.

[41]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[42]  Qingfu Zhang,et al.  Stable Matching-Based Selection in Evolutionary Multiobjective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[43]  Tea Tusar,et al.  Visualization in Multiobjective Optimization , 2016, GECCO.

[44]  Xin Yao,et al.  Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization , 2017, IEEE Transactions on Evolutionary Computation.

[45]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[46]  Georges G. Grinstein,et al.  A survey of visualizations for high-dimensional data mining , 2001 .

[47]  Qingfu Zhang,et al.  Learning to Decompose: A Paradigm for Decomposition-Based Multiobjective Optimization , 2019, IEEE Transactions on Evolutionary Computation.

[48]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[49]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[50]  Qingfu Zhang,et al.  Efficient Nondomination Level Update Method for Steady-State Evolutionary Multiobjective Optimization , 2017, IEEE Transactions on Cybernetics.

[51]  Sanaz Mostaghim,et al.  Heatmap Visualization of Population Based Multi Objective Algorithms , 2007, EMO.

[52]  Kim-Fung Man,et al.  Learning paradigm based on jumping genes: A general framework for enhancing exploration in evolutionary multiobjective optimization , 2013, Inf. Sci..