Three-dimensional General-relativistic Simulations of Neutrino-driven Winds from Magnetized Proto–Neutron Stars
暂无分享,去创建一个
[1] L. Roberts,et al. Proto-Neutron Star Convection and the Neutrino-Driven Wind: Implications for the r-Process , 2023, Monthly Notices of the Royal Astronomical Society.
[2] M. Obergaulinger,et al. Three-dimensional core-collapse supernovae with complex magnetic structures: II. Rotational instabilities and multi-messenger signatures , 2022, Monthly Notices of the Royal Astronomical Society.
[3] T. Thompson,et al. The Early Evolution of Magnetar Rotation I: Slowly Rotating"Normal"Magnetars , 2022, 2208.09042.
[4] M. Aloy,et al. Magnetorotational supernovae: A nucleosynthetic analysis of sophisticated 3D models , 2022, 2206.11914.
[5] D. Siegel,et al. GRMHD Simulations of Neutron-star Mergers with Weak Interactions: r-process Nucleosynthesis and Electromagnetic Signatures of Dynamical Ejecta , 2022, The Astrophysical Journal.
[6] H. Janka,et al. A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback , 2022, Astronomy & Astrophysics.
[7] D. Siegel,et al. Three-dimensional General-relativistic Simulations of Neutrino-driven Winds from Rotating Proto-neutron Stars , 2022, 2203.16560.
[8] J. Fuller,et al. The spins of compact objects born from helium stars in binary systems , 2022, 2201.08407.
[9] J. Guilet,et al. MRI-driven alpha Omega dynamos in protoneutron stars , 2021, Astronomy & Astrophysics.
[10] A. Burrows,et al. On the Origin of Pulsar and Magnetar Magnetic Fields , 2021, The Astrophysical Journal.
[11] M. Obergaulinger,et al. Three-dimensional core-collapse supernovae with complex magnetic structures – I. Explosion dynamics , 2021, 2105.00665.
[12] M. Aloy,et al. Magnetorotational core collapse of possible GRB progenitors – III. Three-dimensional models , 2020, 2008.07205.
[13] Jaime Fern'andez del R'io,et al. Array programming with NumPy , 2020, Nature.
[14] Kendrick M. Smith,et al. A bright millisecond-duration radio burst from a Galactic magnetar , 2020, Nature.
[15] R. Haas,et al. A Magnetar Engine for Short GRBs and Kilonovae , 2020, The Astrophysical Journal.
[16] K. Kotake,et al. Magnetorotational Explosion of a Massive Star Supported by Neutrino Heating in General Relativistic Three-dimensional Simulations , 2020, The Astrophysical Journal.
[17] H. Janka,et al. Magnetar formation through a convective dynamo in protoneutron stars , 2020, Science Advances.
[18] L. Roberts,et al. Wave heating from proto-neutron star convection and the core-collapse supernova explosion mechanism , 2019, Monthly Notices of the Royal Astronomical Society.
[19] Johannes L. Schönberger,et al. SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.
[20] C. Kouveliotou,et al. Formation rates and evolution histories of magnetars , 2019, Monthly Notices of the Royal Astronomical Society.
[21] A. Piro,et al. Slowing the spins of stellar cores , 2019, Monthly Notices of the Royal Astronomical Society.
[22] B. Metzger,et al. A Magnetar Origin for the Kilonova Ejecta in GW170817 , 2018, 1801.04286.
[23] D. Siegel,et al. Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers , 2017, 1711.00868.
[24] T. Thompson,et al. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis , 2017, 1709.03997.
[25] S. Campana,et al. Systematic study of magnetar outbursts , 2017, Proceedings of the International Astronomical Union.
[26] J. Lippuner,et al. Neutrino-heated winds from millisecond protomagnetars as sources of the weak r-process , 2017, 1701.03123.
[27] Luciano Rezzolla,et al. Dynamical Mass Ejection from Binary Neutron Star Mergers , 2016, 1601.02426.
[28] Erik Schnetter,et al. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae , 2015, Nature.
[29] Oleg Korobkin,et al. Neutrino-driven winds from neutron star merger remnants , 2014, 1405.6730.
[30] Erik Schnetter,et al. GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit , 2013, 1304.5544.
[31] T. Fischer,et al. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS , 2012, 1207.2184.
[32] C. Ott,et al. The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.
[33] B. Metzger,et al. The Proto-Magnetar Model for Gamma-Ray Bursts , 2010, 1012.0001.
[34] Christian D. Ott,et al. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes , 2009, 0912.2393.
[35] A. Mezzacappa,et al. Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.
[36] B. Metzger,et al. Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae , 2009, 0901.3801.
[37] Princeton,et al. Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts , 2007, 0705.1742.
[38] L. Scheck,et al. Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.
[39] G. Martínez-Pinedo,et al. Theory of core-collapse supernovae , 2006, astro-ph/0612072.
[40] B. Metzger,et al. Proto-Neutron Star Winds with Magnetic Fields and Rotation , 2006, astro-ph/0608682.
[41] Utrecht,et al. Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars , 2006, astro-ph/0604187.
[42] D. Wickramasinghe,et al. Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis , 2006, astro-ph/0601258.
[43] C. Ott,et al. Multidimensional Radiation/Hydrodynamic Simulations of Proto-Neutron Star Convection , 2005, astro-ph/0510229.
[44] S. Nagataki,et al. Alfvén Wave-driven Proto-Neutron Star Winds and r-Process Nucleosynthesis , 2004, astro-ph/0412362.
[45] C. Thompson,et al. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004, astro-ph/0406133.
[46] J. Thornburg. Black-hole excision with multiple grid patches , 2004, gr-qc/0404059.
[47] Philip Chang,et al. Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts , 2004, astro-ph/0401555.
[48] Scott H. Hawley,et al. Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.
[49] T. Thompson. Magnetic Protoneutron Star Winds and r-Process Nucleosynthesis , 2003, astro-ph/0302132.
[50] A. Burrows,et al. The Physics of Proto-Neutron Star Winds: Implications for r-Process Nucleosynthesis , 2001, astro-ph/0105004.
[51] D. Howell,et al. Bipolar Supernova Explosions , 2001 .
[52] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[53] S. Yamada,et al. Hydrodynamical Study of Neutrino-Driven Wind as an r-Process Site , 1999, astro-ph/9912156.
[54] H. Tagoshi,et al. General Relativistic Effects on Neutrino-driven Winds from Young, Hot Neutron Stars and r-Process Nucleosynthesis , 1999, astro-ph/9911164.
[55] J. Lattimer,et al. Evolution of Proto-Neutron Stars , 1998, astro-ph/9807040.
[56] K. Hurley,et al. An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.
[57] Y. Qian,et al. Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology , 1998, astro-ph/9802345.
[58] B. Meyer,et al. Survey of r-Process Models , 1997 .
[59] S. Woosley,et al. Nucleosynthesis in Neutrino-driven Winds. II. Implications for Heavy Element Synthesis , 1996, astro-ph/9611097.
[60] S. Woosley,et al. Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.
[61] A. Burrows,et al. On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.
[62] James R. Wilson,et al. The r-process and neutrino-heated supernova ejecta , 1994 .
[63] C. Thompson,et al. Neutron star dynamos and the origins of pulsar magnetism , 1993 .
[64] W. M. Howard,et al. r-process nucleosynthesis in the high-entropy supernova bubble , 1992 .
[65] S. Shapiro,et al. Neutrino-driven winds from young, hot neutron stars , 1986 .
[66] A. Burrows,et al. The birth of neutron stars , 1986 .
[67] S. Bruenn,et al. Stellar core collapse - Numerical model and infall epoch , 1985 .
[68] L. Davis,et al. The angular momentum of the solar wind. , 1967 .
[69] L. Woltjer. X-RAYS AND TYPE I SUPERNOVA REMNANTS , 1964 .
[70] Imre Bartos. Neutron stars , 2000 .
[71] V. V. Uso,et al. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992, Nature.
[72] M. Ruderman. Pulsars: Structure and Dynamics , 1972 .