Three-dimensional General-relativistic Simulations of Neutrino-driven Winds from Magnetized Proto–Neutron Stars

Formed in the aftermath of a core-collapse supernova or neutron star merger, a hot proto–neutron star (PNS) launches an outflow driven by neutrino heating lasting for up to tens of seconds. Though such winds are considered potential sites for the nucleosynthesis of heavy elements via the rapid neutron capture process (r-process), previous work has shown that unmagnetized PNS winds fail to achieve the necessary combination of high entropy and/or short dynamical timescale in the seed nucleus formation region. We present three-dimensional general-relativistic magnetohydrodynamical simulations of PNS winds which include the effects of a dynamically strong (B ≳ 1015 G) dipole magnetic field. After initializing the magnetic field, the wind quickly develops a helmet-streamer configuration, characterized by outflows along open polar magnetic field lines and a “closed” zone of trapped plasma at lower latitudes. Neutrino heating within the closed zone causes the thermal pressure of the trapped material to rise in time compared to the polar outflow regions, ultimately leading to the expulsion of this matter from the closed zone on a timescale of ∼60 ms, consistent with the predictions of Thompson. The high entropies of these transient ejecta are still growing at the end of our simulations and are sufficient to enable a successful second-peak r-process in at least a modest ≳1% of the equatorial wind ejecta.

[1]  L. Roberts,et al.  Proto-Neutron Star Convection and the Neutrino-Driven Wind: Implications for the r-Process , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  M. Obergaulinger,et al.  Three-dimensional core-collapse supernovae with complex magnetic structures: II. Rotational instabilities and multi-messenger signatures , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  T. Thompson,et al.  The Early Evolution of Magnetar Rotation I: Slowly Rotating"Normal"Magnetars , 2022, 2208.09042.

[4]  M. Aloy,et al.  Magnetorotational supernovae: A nucleosynthetic analysis of sophisticated 3D models , 2022, 2206.11914.

[5]  D. Siegel,et al.  GRMHD Simulations of Neutron-star Mergers with Weak Interactions: r-process Nucleosynthesis and Electromagnetic Signatures of Dynamical Ejecta , 2022, The Astrophysical Journal.

[6]  H. Janka,et al.  A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback , 2022, Astronomy & Astrophysics.

[7]  D. Siegel,et al.  Three-dimensional General-relativistic Simulations of Neutrino-driven Winds from Rotating Proto-neutron Stars , 2022, 2203.16560.

[8]  J. Fuller,et al.  The spins of compact objects born from helium stars in binary systems , 2022, 2201.08407.

[9]  J. Guilet,et al.  MRI-driven alpha Omega dynamos in protoneutron stars , 2021, Astronomy & Astrophysics.

[10]  A. Burrows,et al.  On the Origin of Pulsar and Magnetar Magnetic Fields , 2021, The Astrophysical Journal.

[11]  M. Obergaulinger,et al.  Three-dimensional core-collapse supernovae with complex magnetic structures – I. Explosion dynamics , 2021, 2105.00665.

[12]  M. Aloy,et al.  Magnetorotational core collapse of possible GRB progenitors – III. Three-dimensional models , 2020, 2008.07205.

[13]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[14]  Kendrick M. Smith,et al.  A bright millisecond-duration radio burst from a Galactic magnetar , 2020, Nature.

[15]  R. Haas,et al.  A Magnetar Engine for Short GRBs and Kilonovae , 2020, The Astrophysical Journal.

[16]  K. Kotake,et al.  Magnetorotational Explosion of a Massive Star Supported by Neutrino Heating in General Relativistic Three-dimensional Simulations , 2020, The Astrophysical Journal.

[17]  H. Janka,et al.  Magnetar formation through a convective dynamo in protoneutron stars , 2020, Science Advances.

[18]  L. Roberts,et al.  Wave heating from proto-neutron star convection and the core-collapse supernova explosion mechanism , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[20]  C. Kouveliotou,et al.  Formation rates and evolution histories of magnetars , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  A. Piro,et al.  Slowing the spins of stellar cores , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  B. Metzger,et al.  A Magnetar Origin for the Kilonova Ejecta in GW170817 , 2018, 1801.04286.

[23]  D. Siegel,et al.  Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers , 2017, 1711.00868.

[24]  T. Thompson,et al.  High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis , 2017, 1709.03997.

[25]  S. Campana,et al.  Systematic study of magnetar outbursts , 2017, Proceedings of the International Astronomical Union.

[26]  J. Lippuner,et al.  Neutrino-heated winds from millisecond protomagnetars as sources of the weak r-process , 2017, 1701.03123.

[27]  Luciano Rezzolla,et al.  Dynamical Mass Ejection from Binary Neutron Star Mergers , 2016, 1601.02426.

[28]  Erik Schnetter,et al.  A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae , 2015, Nature.

[29]  Oleg Korobkin,et al.  Neutrino-driven winds from neutron star merger remnants , 2014, 1405.6730.

[30]  Erik Schnetter,et al.  GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit , 2013, 1304.5544.

[31]  T. Fischer,et al.  CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS , 2012, 1207.2184.

[32]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[33]  B. Metzger,et al.  The Proto-Magnetar Model for Gamma-Ray Bursts , 2010, 1012.0001.

[34]  Christian D. Ott,et al.  A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes , 2009, 0912.2393.

[35]  A. Mezzacappa,et al.  Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.

[36]  B. Metzger,et al.  Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae , 2009, 0901.3801.

[37]  Princeton,et al.  Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts , 2007, 0705.1742.

[38]  L. Scheck,et al.  Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.

[39]  G. Martínez-Pinedo,et al.  Theory of core-collapse supernovae , 2006, astro-ph/0612072.

[40]  B. Metzger,et al.  Proto-Neutron Star Winds with Magnetic Fields and Rotation , 2006, astro-ph/0608682.

[41]  Utrecht,et al.  Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars , 2006, astro-ph/0604187.

[42]  D. Wickramasinghe,et al.  Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis , 2006, astro-ph/0601258.

[43]  C. Ott,et al.  Multidimensional Radiation/Hydrodynamic Simulations of Proto-Neutron Star Convection , 2005, astro-ph/0510229.

[44]  S. Nagataki,et al.  Alfvén Wave-driven Proto-Neutron Star Winds and r-Process Nucleosynthesis , 2004, astro-ph/0412362.

[45]  C. Thompson,et al.  Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004, astro-ph/0406133.

[46]  J. Thornburg Black-hole excision with multiple grid patches , 2004, gr-qc/0404059.

[47]  Philip Chang,et al.  Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts , 2004, astro-ph/0401555.

[48]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[49]  T. Thompson Magnetic Protoneutron Star Winds and r-Process Nucleosynthesis , 2003, astro-ph/0302132.

[50]  A. Burrows,et al.  The Physics of Proto-Neutron Star Winds: Implications for r-Process Nucleosynthesis , 2001, astro-ph/0105004.

[51]  D. Howell,et al.  Bipolar Supernova Explosions , 2001 .

[52]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[53]  S. Yamada,et al.  Hydrodynamical Study of Neutrino-Driven Wind as an r-Process Site , 1999, astro-ph/9912156.

[54]  H. Tagoshi,et al.  General Relativistic Effects on Neutrino-driven Winds from Young, Hot Neutron Stars and r-Process Nucleosynthesis , 1999, astro-ph/9911164.

[55]  J. Lattimer,et al.  Evolution of Proto-Neutron Stars , 1998, astro-ph/9807040.

[56]  K. Hurley,et al.  An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.

[57]  Y. Qian,et al.  Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology , 1998, astro-ph/9802345.

[58]  B. Meyer,et al.  Survey of r-Process Models , 1997 .

[59]  S. Woosley,et al.  Nucleosynthesis in Neutrino-driven Winds. II. Implications for Heavy Element Synthesis , 1996, astro-ph/9611097.

[60]  S. Woosley,et al.  Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.

[61]  A. Burrows,et al.  On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.

[62]  James R. Wilson,et al.  The r-process and neutrino-heated supernova ejecta , 1994 .

[63]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[64]  W. M. Howard,et al.  r-process nucleosynthesis in the high-entropy supernova bubble , 1992 .

[65]  S. Shapiro,et al.  Neutrino-driven winds from young, hot neutron stars , 1986 .

[66]  A. Burrows,et al.  The birth of neutron stars , 1986 .

[67]  S. Bruenn,et al.  Stellar core collapse - Numerical model and infall epoch , 1985 .

[68]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[69]  L. Woltjer X-RAYS AND TYPE I SUPERNOVA REMNANTS , 1964 .

[70]  Imre Bartos Neutron stars , 2000 .

[71]  V. V. Uso,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992, Nature.

[72]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .