An inverse problem for estimation of bending stiffness in Kirchhoff-Love plates

This work deals with the development of a numerical method for solving an inverse problem for bending stiffness estimation in a Kirchhoff-Love plate from overdetermined data. The coefficient is identified using a technique called the Method of Variational Imbedding, where the original inverse problem is replaced by a minimization problem. The Euler-Lagrange equations for minimization comprise higher-order equations for the solution of the displacement and an equation for the bending stiffness. The correctness of the embedded problem is discussed. A difference scheme and a numerical algorithm for solving the parameter identification problem are developed. Numerical results for the obtained values of the bending stiffness as an inverse problem are presented.

[1]  Luigi Preziosi,et al.  Modelling Mathematical Methods and Scientific Computation , 1995 .

[2]  Tchavdar T. Marinov,et al.  Coefficient Identification in Elliptic Partial Differential Equation , 2005, LSSC.

[3]  Derek B. Ingham,et al.  Analysis of coefficient identification problems associated to the inverse Euler-Bernoulli beam theory , 1999 .

[4]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[5]  C. Atkinson METHODS FOR SOLVING INCORRECTLY POSED PROBLEMS , 1985 .

[6]  B. Borden,et al.  Synthetic-aperture imaging from high-Doppler-resolution measurements , 2005 .

[7]  Tchavdar T. Marinov,et al.  Coefficient identification in Euler-Bernoulli equation from over-posed data , 2010, J. Comput. Appl. Math..

[8]  Robert Lattès,et al.  Méthode de quasi-réversibilbilité et applications , 1967 .

[9]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[10]  Tchavdar T. Marinov,et al.  Novel Numerical Approach to Solitary-wave Solutions Identification of Boussinesq and Korteweg-de Vries Equations , 2005, Int. J. Bifurc. Chaos.

[11]  P. Lamm SOME RECENT DEVELOPMENTS AND OPEN PROBLEMS IN SOLUTION METHODS FOR MATHEMATICAL INVERSE PROBLEMS , 2003 .

[12]  Tchavdar T. Marinov,et al.  Identification of heat-conduction coefficient via method of variational imbedding , 1998 .

[13]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[14]  Andrei Constantinescu,et al.  On the identification of elastic moduli from displacement-force boundary measurements , 1995 .

[15]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[16]  Tchavdar T. Marinov,et al.  Inverse Problem for Coefficient Identification in Euler-Bernoulli Equation by Linear Spline Approximation , 2009, LSSC.

[17]  Masaru Ikehata,et al.  An Inverse Problem for the Plate in the Love-Kirchhoff Theory , 1993, SIAM J. Appl. Math..